Автоматическое переключение линий питания

Содержание

Автоматическое переключение линий питания

Одним из важнейших требований, предъявляемых к современным системам электроснабжения, является обеспечение бесперебойного и гарантированного питания нагрузок критичных к перерывам питания. Доля таких нагрузок неуклонно возрастает. Это и различные системы безопасности, и оборудование медицинских учреждений, и системы связи и обработки данных, многочисленные непрерывные технологические процессы. В большинстве случаев перерыв в питании этих систем может повлечь экономические потери, связанные с простоем и выходом из строя технологического оборудования, потерей информации, перерывами в работе систем связи, интернет-сайтов и другими последствиями. В ряде случаев перерыв электроснабжения может угрожать безопасности жизни людей, когда речь идёт о реанимационном оборудовании, системах дымоудаления и пожаротушения, аварийном освещении и других важных системах.

Применение высококачественного электрооборудования ведущих производителей, исключение ошибок при проектировании электроустановок и правильная их эксплуатация, конечно, значительно повышают показатели надёжности электроснабжения. Однако, в большинстве случаев необходимо резервирование каналов передачи электроэнергии, чтобы гарантировать питание критичных нагрузок. Системы Автоматического Ввода Резерва (АВР) предназначены для обеспечения автоматического переключения питания с основного источника на резервный при полном пропадании напряжения основного ввода, или если параметры напряжения основного источника отличаются от нормально допустимых.

В Правилах устройства электроустановок тематика АВР освещается в двух разделах, в первую очередь это разделы, касающиеся категорий электроприёмников (п.1.2.17-1.2.21; п.3.3.30-3.3.42):

  • Электроприёмники первой категории — электроприёмники, перерыв электроснабжения которых может повлечь за собой опасность для жизни людей, угрозу для безопасности государства, значительный материальный ущерб, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства, объектов связи и телевидения.
  • Электроприёмники второй категории — электроприёмники, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, массовым простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей.
  • Электроприёмники третьей категории — все остальные электроприёмники, не подпадающие под определения первой и второй категорий.

Области применения АВР охватывают все виды промышленных и гражданских объектов. Безусловно, при выборе решения АВР, необходимо учитывать категорию и характер объекта, экономические аспекты, функциональные и технические возможности различных решений.

Однолинейная схема 2-2

Пример схемы ГРЩ с применением АВР ATS500

Термины и определения

  • Автоматический Ввод Резерва (АВР) — устройство, предназначенное для автоматического переключения питания электрических нагрузок от неисправного источника энергии к рабочему источнику.
  • Основной ввод — ввод электропитания, от которого осуществляется питание всех нагрузок в течение длительного времени.
  • Резервный ввод — ввод электропитания, от которого осуществляется питание всех (или части) нагрузок во время отсутствия питания на основном вводе либо, если качество электроэнергии основного ввода неудовлетворительно. Во многих случаях в качестве источника резервного электроснабжения применяется дизельная электрическая станция.
  • Дизельная Электрическая Станция (ДЭС) — источник резервного электроснабжения на базе дизельного двигателя внутреннего сгорания и электрического генератора. Могут применяться и другие типы двигателей.
  • Программируемый Логический Контроллер (ПЛК) — специализированное электронно-вычислительное устройство, предназначенное для управления технологическим оборудованием.

Схемы АВР

Выбор той или иной схемы АВР определяется в первую очередь областью применения и категорией потребителей, а также возможностью разделения нагрузок на секции.

  • Два взаимно резервированных ввода от сети работают на одну секцию потребителей. Вводы могут быть равнозначными либо один из них может быть приоритетным. Приоритет вводов может настраиваться.
  • Два взаимно резервированных ввода работают на одну секцию потребителей. Первый ввод от сети, второй — от резервного источника. Ввод от сети приоритетный по отношению к вводу от резервного источника.
  • Два независимых ввода от сети, работающие на две секции потребителей. Резервирование осуществляется за счёт секционного аппарата.
  • Два независимых ввода от сети, работающие на две секции потребителей (схема «крест»). Резервирование осуществляется за счёт переключения секции потребителей на другой ввод.
  • Два независимых ввода, работающие на две секции потребителей. Первый ввод от сети, второй — от резервного источника. Резервирование осуществляется за счёт переключения потребителей на резервный ввод. Первая секция потребителей обычно назначена неприоритетной при работе от резервного источника
  • Два независимых ввода от сети, работающие на две секции потребителей (схема «крест»). Резервирование осуществляется за счёт переключения секции потребителей на другой ввод.
  • Три взаимно резервированных ввода, работающие на одну секцию потребителей. Два ввода от сети, третий — от резервного источника. Оба ввода от сети являются приоритетными по отношению к вводу от резервного источника. Взаимный приоритет вводов от сети может настраиваться.
  • ATS-B 3-1CGТри взаимно резервированных ввода, работающие на одну секцию потребителей. Два ввода от сети, третий — от резервного источника. Оба ввода от сети являются приоритетными по отношению к вводу от резервного источника. Взаимный приоритет вводов от сети может настраиваться.
  • Два независимых ввода от сети работают на две секции потребителей. Дополнительно, третий ввод от резервного источника подключается на первую секцию. Резервирование осуществляется за счёт секционного выключателя. Вторая секция потребителей может быть назначена неприоритетной при работе от резервного источника.
  • Два независимых ввода от сети работают на две секции потребителей. Дополнительно, третий ввод от резервного источника подключается на вторую секцию. Резервирование осуществляется за счёт секционного выключателя. Первая секция потребителей может быть назначена неприоритетной при работе от резервного источника.
  • Два независимых ввода от сети работают на три секции потребителей. Дополнительно, третий ввод от резервного источника подключается на третью секцию. Резервирование осуществляется за счёт секционных выключателей. Первая и вторая секции потребителей могут быть назначены неприоритетными при работе от резервного источника.
  • Два независимых ввода от сети работают на три секции потребителей. Дополнительно, третий ввод от резервного источника подключается на третью секцию. Резервирование осуществляется за счёт секционных выключателей. Первая и вторая секции потребителей могут быть назначены неприоритетными при работе от резервного источника.
  • Два независимых ввода от сети работают на три секции потребителей. Дополнительно, третий ввод от резервного источника подключается на третью секцию. Резервирование осуществляется за счёт секционных выключателей. Первая и вторая секции потребителей могут быть назначены неприоритетными при работе от резервного источника.
  • Два независимых ввода от сети и два ввода от резервных генераторов, работают на две секции потребителей. Резервирование осуществляется за счёт секционного выключателя.
  • Два независимых ввода от сети и два ввода от одного резервного генератора, работают на две секции потребителей. Резервирование осуществляется за счёт секционного выключателя.

Основные элементы АВР

Коммутационные аппараты для АВР

Основными коммутационными аппаратами, применяемыми в системах АВР, являются:

  • Контактор. Самым простым коммутационным аппаратом, применяемым в АВР, является электромеханический контактор. Преимущество контакторов заключается в том, что электромагнитный привод является его неотъемлемой частью, а управление им производится без каких-либо дополнительных аксессуаров. Серьёзным достоинством контакторов является их быстродействие и высокая коммутационная износостойкость.
    Тем не менее, при применении контакторов в схемах АВР, использование механической блокировки является обязательным условием. Кроме того, контактор не является аппаратом защиты, поэтому схему АВР необходимо дополнить автоматическими выключателями или предохранителями.
  • Реверсивный выключатель нагрузки с моторным приводом. Основные преимущества при применении реверсивных выключателей нагрузки с моторным приводом для схем АВР — компактность и надёжность. Механическая блокировка является неотъемлемой конструктивной частью аппарата. Моторный привод обеспечивает автоматическое переключение контактной группы.
  • Коммутационный аппарат автоматического переключения (КААП). Электрический аппарат, включающий в одном корпусе группу силовых контактов, моторный привод, микропроцессорное устройство и другие вспомогательные элементы, необходимые для контроля цепей питания и переключения нагрузки от одного источника питания к другому. Механическая блокировка является неотъемлемой конструктивной частью аппарата. Серьезным преимуществом аппарата является его компактность, а также минимальное количество внешних элементов и подключений.
  • Автоматический выключатель с моторным приводом. Самым распространённым коммутационным аппаратом для схем АВР является автоматический выключатель с моторным приводом. Автоматический выключатель сочетает функции защиты и коммутации в одном электрическом аппарате. Современные автоматические выключатели с электронными расцепителями защиты также позволяют реализовать дополнительные функции коммуникации, диспетчеризации и мониторинга.

Управляющие устройства АВР

Важное влияние на технические и функциональные параметры АВР оказывает система управления. Основные функции системы управления АВР – контроль наличия напряжения на вводах, управление коммутационными аппаратами и резервным генератором. Дополнительно, система управления может обеспечивать сигнализацию, мониторинг и дистанционное управление. В качестве элементной базы для систем управления могут применяться:

  • Схемы на основе релейной логики. Схемы на реле выгодно использовать для несложных схем АВР. Однако, с ростом требований к функциональным возможностям, количество элементов в схеме значительно возрастает. С одной стороны, это приводит к росту габаритов и стоимости системы, с другой снижает надёжность.
  • Специализированные блоки управления. Основное преимущество таких блоков заключается в том, что все внутренние соединения и программирование выполнено в заводских условиях, а также протестировано. Все элементы находятся в общем корпусе с высокой степенью защиты со стороны панели управления. Блоки управления позволяют настраивать все необходимые параметры АВР.
  • Программируемые логические контроллеры. Для реализации наиболее сложных схем АВР предпочтение следует отдать ПЛК. Они позволяют реализовать самые широкие возможности и гибкую реализацию основных функций системы управления для всех вариантов схем. При этом дополнительные функции, изменение настроек или алгоритма управления чаще всего не требуют применения дополнительного оборудования.

Человеко-машинный интерфейс

Для организации взаимодействия персонала, обслуживающего электроустановку, системой АВР предусматривается набор элементов индикации и управления – человеко-машинный интерфейс. Он позволяет контролировать состояние коммутационных аппаратов, наличие напряжения на вводах и, при необходимости, управлять АВР в ручном режиме.
Простейшим вариантом исполнения интерфейса являются сигнальные лампы, кнопки и переключатели. Более эффективным является построение человеко-машинного интерфейса на основе жидкокристаллических дисплеев. В зависимости от применяемых средств управления такие дисплеи могут быть монохромными или цветными, сенсорными или с клавишами.
Кроме базовых возможностей отображения состояния АВР и управления, дисплеи позволяют фиксировать события и настраивать многочисленные параметры. В дополнение к элементам интерфейса, установленным непосредственно на электроустановке, АВР с электронной системой управления может оснащаться также дистанционным интерфейсом.

Функциональные свойства АВР

Устройства АВР значительно различаются по функциональным возможностям и быстродействию. Для выбора того или иного варианта решения можно воспользоваться рядом критериев.

  • Блокировки. В большинстве случаев параллельное соединение вводов нежелательно либо недопустимо. Для исключения параллельного соединения вводов могут применяться блокировки.
  • Механическая блокировка. Достигается путём применения механических аксессуаров, которые исключают возможность одновременного включения двух аппаратов. Возможность установки механической блокировки определяется как конструкцией коммутационных аппаратов, так и схемой их соединения.
    Так, реверсивные выключатели нагрузки имеют механическую блокировку, как неотъемлемую часть их конструкции. Для всех типов автоматических выключателей и контакторов возможна механическая блокировка двух аппаратов. Для ряда воздушных выключателей возможна также механическая блокировка трёх аппаратов.
  • Электрическая блокировка. Применяется в тех случаях, когда обеспечить механическую блокировку невозможно. Электрическая блокировка исключает возможность подачи управляющего сигнала на обмотки контакторов или моторные приводы выключателей. В ряде случаев электрическая блокировка реализуется на программном уровне.
  • Питание цепей управления. Немаловажное значение имеет организация питания системы управления АВР, так как от надёжного питания цепей управления зависит работа АВР в целом. Фактически в составе автоматики может быть встроена схема АВР для цепей оперативного тока. Как правило, для этого используется система сблокированных контакторов.
  • Диагностика. Для АВР с электронными системами управления характерно наличие встроенных средств диагностики. Они позволяют вовремя обнаруживать неисправности системы управления и коммутационной аппаратуры и, таким образом, снижают вероятность внезапных отказов АВР.
    Электронные системы управления АВР осуществляют непрерывную самодиагностику и, в случае выявления проблем, немедленно о них сигнализируют.

Заключение

В данной статье была рассмотрена основная информация по решениям для систем автоматического ввода резерва низкого напряжения.

Более полную информацию по данной теме можно прочитать в специализированной брошюре “Автоматический Ввод Резерва. Обзор решений“, где в том числе подробно разобраны решения ABB для систем АВР.

Автомат переключения на резервное питание

3 схемы автоматического ввода резерва для дома. Ввод 1 — Ввод 2 — Генератор.

При сборке схемы автоматического ввода резерва можно выбрать три варианта. Два более простых и один посложнее.

Рассмотрим каждый из вариантов схемы поподробнее.

Простейшая схема АВР для двух однофазных вводов собирается всего лишь на одном магнитном пускателе. Для этого понадобится контактор с двумя парами контактов:

    нормально разомкнутым
    нормально замкнутым

Если таковых в вашем контакторе не оказалось, можно использовать специальную приставку.

Только учтите, что контакты у большинства из них не рассчитаны на большие токи. А если вы решите подключать через АВР нагрузку всего дома, то уж точно не стоит этого делать, используя блок контакты расположенные по бокам стандартных пускателей.



Вот самая простая схема АВР:

Катушка магнитного пускателя подключается на один из вводов. В нормальном режиме напряжение поступает на катушку, она замыкает контакт КМ1-1, а контакт КМ1-2 размыкается.

SF1 и SF2 в схеме – это однополюсные автоматические выключатели.

Напряжение через контактор поступает к потребителю. Дополнительно в схеме могут быть подключены сигнальные лампы. Они визуально будут показывать какой из вводов в данный момент подключен. Немного измененная схемка с лампочками:

Если напряжение на первом вводе исчезло, контактор отпадает. Его контакты КМ1-1 размыкаются, а КМ2-1 замыкаются. Напряжение начинает поступать к потребителю с ввода №2.

Если вам в нормальном режиме просто нужно проверить работоспособность схемы, то выключите автомат SF1 и смотрите как реагирует сборка. Все ли работает исправно.

Самое главное здесь изначально проконтролировать на какой ток рассчитаны эти самые нормально замкнутые и разомкнутые контакты.

При этом обратите внимание, что эту простейшую схему можно собрать двумя способами:

    без разрыва ноля
    с разрывом нулевого провода

Без разрыва можно применять в том случае, если у вас есть две независимые линии эл.передач или кабельных ввода, от которых вы собственно и подключаете весь дом. А вот когда резервной линией является какой-то автономный источник энергии – ИБП или генератор, то здесь придется разрывать как фазу, так и ноль.

Естественно, что все контакторы подключаются после счетчика kWh. QF – это модульные автоматы в щитке дома.

Если у вас второй источник питания подает напряжение не автоматически, например бензиновый генератор без пусковой аппаратуры. Который нужно сначала вручную завести, прогреть и только потом переключиться, то схемку можно немного изменить, добавив туда одну единственную кнопку.

За счет нее не будет происходить автоматического переключения. Вы сами выберите для этого нужный момент, нажав ее когда потребуется. Монтируется эта кнопка SB1 параллельно катушке контактора.

Когда у вас напряжение на основном вводе не исчезает на долго, а периодически пропадает и появляется (причины могут быть разными), в этом случае не желательны постоянные переключения контакторов туда-обратно. Здесь целесообразно использовать специальную приставку к контактору типа ПВИ-12 с задержкой времени.

Трехфазная схема практически аналогична однофазной.

Только особо следите за правильной фазировкой АВС. Она должна совпадать на вводе-1 с вводом-2. Иначе 3-х фазные двигатели после переключения будут крутиться в обратную сторону.

Вторая схема немного посложнее. В ней используется уже два магнитных пускателя.

Допустим, у вас есть два трехфазных ввода и один потребитель. В схеме применены магнитные пускатели с 4-мя контактами:

    3 нормально разомкнутые
    1 нормально замкнутый КМ1

Катушка пускателя КМ1 подключается через фазу L3 от первого ввода и через нормально замкнутый контакт КМ2. Таким образом, когда вы подаете питание на ввод №1, катушка первого пускателя замыкается и вся нагрузка подключается к источнику напряжения №1.

Второй контактор при этом отключен, так как нормально замкнутый разъем КМ1, будет в этот момент размокнут, и питание на катушку второго пускателя поступать не будет. При исчезновении напряжения на первом вводе, отпадает контактор-1 и включается контактор-2. Потребитель остается со светом.

Самый главный плюс этих схем – их простота. А минусом является то, что подобные сборки называть схемами автоматизации можно с очень большой натяжкой.

Стоит лишь исчезнуть напряжению на той фазе, которая питает катушку включения и вы легко можете получить встречное КЗ.

Можно конечно усовершенствовать всю систему, выбрав катушку контактора не на 220В, а на 380В. В этом случае будет осуществлен контроль уже по двум фазам.

Но на 100% вы все равно себя не обезопасите. А если учесть момент возможного залипания контактов, то тем более.

Кроме того, вы никак не будете защищены от слишком низкого напряжения. Пускатель №1 может отключиться, только если U на входе будет ниже 110В. Во всех остальных случаях, ваше оборудование будет продолжать получать не качественную электроэнергию, хотя казалось бы, рядом и есть второй исправный ввод.

Чтобы повысить надежность, придется усложнять схему и включать в нее дополнительные элементы:

    реле напряжения
    реле контроля фаз и т.п.

Поэтому в последнее время, для сборки схем АВР, все чаще стали применяться специальные реле или контроллеры — ”мозги” всего устройства. Они могут быть разных производителей и выполнять функцию не только включения резервного питания от одного источника.

Вдруг перед вами стоит более сложная задача. Например, нужно чтобы схема управляла сразу двумя вводами и вдобавок еще генератором. Причем генератор должен запускаться автоматически.

Алгоритм работы здесь следующий:

1.При неисправном вводе №1 происходит автоматическое переключение на ввод №2.
2.При отсутствии напряжения на обоих вводах осуществляется запуск генератора и переключение всей нагрузки на него.

Как и на чем реализовать подобный ввод резерва? Здесь можно применить схему АВР на базе AVR-02 от компании ФиФ Евроавтоматика.

В принципе есть смысл один раз потратиться и защитить себя и свое оборудование раз и навсегда.

Данное устройство является многофункциональным и с помощью него можно построить 8 разных схем АВР. Чаще всего применяются три из них:

Автоматическое переключение на резервный источник питания — 2

Предыдущая версия данного устройства могла сработать только тогда, когда пропадало напряжение основного источника, от понижение или повышения напряжения защитить нагрузку не могло. В новом варианте устройства были исправлены эти недочёты, а именно:

    Устройство не переключит нагрузку на резервный источник питания при наличии даже пониженного напряжения основного источника.

Устройство не способно работать при напряжении менее 6-ти вольт.

Устройство не защитит нагрузку при повышении напряжения сверх допустимой величины.

Новый вариант устройства обладает значительно улучшенными характеристиками.

Способно работать при входном напряжении основного источника от 6 до 15 в.

Защита нагрузки от пониженного или повышенного напряжения. Для контроля напряжения основного источника используются два компаратора. При отключении основного источника напряжения, работа устройства аналогична его предыдущей версии.

Ток потребляемый нагрузкой ограничен только максимальным током, который могут выдержать контакты применяемого электромагнитного реле.

Питается устройство от резервного источника питания на 12 в и потребляет ток около 100 ма, в случае если напряжение основного источника меньше 12-ти вольт, нужно применить стабилизатор и включить его в разрыв показанный на схеме, а также установить пороги срабатывания защиты построечными резисторами.

Схема устройства и принцип работы.

Работа устройства

Напряжение основного источника поступает на резисторы R6 и R12 с которых напряжение поступает на входы компараторов, где сравнивается с напряжением поступающим со стабилизатора VR1. Отдельный стабилизатор VR1 применён для того, чтобы при изменении величины напряжения резервного источника питания не менялись пороги срабатывания защиты. Кратко опишу для чего предназначены эти подстроечные резисторы. Резистор R12 отвечает за срабатывание защиты при падении напряжения ниже минимального порога, который этим резистором выставляется. В моём случае этот порог 10.5 вольт и для того, чтобы его выставить, нужно при входном напряжении 10.5 вольт с помощью этого резистора выставить на выводе 7 компаратора напряжение 1.3в, что ниже порога срабатывания компаратора, так как на 6 ноге микросхемы напряжение 1.65 вольта, сразу же сработает защита. Резистор R6 отвечает за срабатывание защиты в случае критического повышения напряжения основного источника. В моём случае величина максимального напряжения установлена на уровне 13 вольт. При этом напряжении резистором R6 необходимо выставить на 5-й ноге микросхемы напряжение 4 вольта, что приведёт к срабатыванию защиты и переключению нагрузки на резервный источник. Благодаря этим резисторам защита срабатывает при понижении напряжения до 10.5 вольт, или повышении до 13.

Самой интересной частью схемы является узел собранный на микросхемах DD1 и DD2. Он собственно и является схемой защиты. Два входа этого узла подключены к компараторам, но для того, чтобы на выводе 8 микросхемы DD1 появился уровень логической 1 и сработала защита должны быть созданы определённые условия. Данный узел интересен ещё и тем, что логическая единица на выходе 8 DD1.1 появится при наличии одинаковых логических состояний на входах, либо два 0 , либо две 1. Если на одном входе будет 1, а на другом 0, то защита не сработает.

Работает схема защиты следующим образом. При нормальном входном напряжении основного источника работает только компаратор DA1.2, так как напряжение выше минимального порога отключения и следовательно открытый выходной транзистора компаратора DA1.2 замыкает выводы 4 и 5 элемента DD2.4 на массу, что аналогично состоянию логического 0, а на входах 1 и 2 элемента DD2.3 действует напряжение около 4.5 — 5 вольт, что аналогично состоянию логической 1, так как напряжение не достигает 13 вольт и компаратор DA1.1 не работает. При таком условии защита не сработает. При повышении напряжения основного источника до 13 вольт начинает работать компаратор DA1.1, открывается выходной транзистор и замыкая входы 1 и 2 DD2.3 на массу принудительно создаёт уровень логического 0, тем самым на обоих входах принудительно появляется уровень логического 0 и срабатывает защита. Если напряжение упало ниже минимального порога, то напряжение подводимое к 7-й ноге компаратора падает до уровня ниже 1.65 вольта, выходной транзистор закроется и перестанет замыкать входы 4 и 5 элемента DD2.4 на массу, что приведёт к установлению на входах 4 и 5 напряжения 4.5 — 5 вольт(уровень 1). Поскольку DA1.1 уже не работает и DA1.2перестал, то создаётся условие при котором уровень логической единицы появится на обоих входах узла защиты и она сработает. Подробнее работа узла показана в таблице. В таблице показаны логические состояния на всех выводах микросхем.

Таблица логических состояний элементов узла.

Налаживание устройства

Правильно собранное устройство требует минимальной наладки, а именно установки порогов срабатывания защиты. Для этого необходимо вместо основного источника напряжения подключить к устройству регулируемый блок питания и с помощью подстроечных резисторов выставить пороги срабатывания защиты.

Внешний вид устройства

Расположение деталей на плате устройства.

АВР и все, все, все: автоматический ввод резерва в дата-центре

В прошлом посте про PDU мы говорили, что в некоторых стойках установлен АВР — автоматический ввод резерва. Но на самом деле в ЦОДе АВР ставят не только в стойке, но и на всем пути электричества. В разных местах они решают разные задачи:

  • в главных распределительных щитах (ГРЩ) АВР переключает нагрузку между вводом от города и резервным питанием от дизель-генераторных установок (ДГУ);
  • в источниках бесперебойного питания (ИБП) АВР переключает нагрузку с основного ввода на байпас (об этом чуть ниже);
  • в стойках АВР переключает нагрузку с одного ввода на другой в случае возникновения проблем с одним из вводов.


АВР в стандартной схеме энергоснабжения дата-центров DataLine.

О том, какие АВР и где используются, и поговорим сегодня.

Основных типа АВР два: ATS (automatic transfer switch) и STS (static transfer switch). Они отличаются принципами работы и элементной базой и используются для разных задач. Если вкратце, то STS — это более «умный» ATS. Он быстрее переключает нагрузку и чаще используется для больших нагрузок/токов. Он более гибок в настройке, зато «с капризами» к сети: может отказаться работать, если 2 ввода питаются от разных источников, например: от трансформатора и ДГУ.

АВР в ГРЩ

Главный АВР дата-центра двадцать лет назад выглядел как сложная система контакторов и реле.


АВР образца начала 2000-х.

Сейчас АВР — это компактное многофункциональное устройство.

Система АВР в ГРЩ управляет вводными автоматами и дает команды на запуск и остановку ДГУ. При нагрузке более 2 МВт на уровне ГРЩ нецелесообразно гнаться за скоростью. Даже если переключится быстро, то пройдет время, пока запустится ДГУ. В этой системе используются более «медленные» ATS и выставляются задержки (уставки). Работает это так: когда питание дата-центра от трансформаторов пропадает, АВР командует устройствам: «Трансформатор, выключись. Теперь ждем 10 секунд (уставка), ДГУ, включись, ждем еще 10 секунд».

АВР в ИБП

На примере ИБП посмотрим, как работает второй тип АВР — STS или static transfer switch.

В ИБП переменный ток преобразуется в постоянный на выпрямителе. Затем на инверторе он превращается обратно в переменный ток, но уже со стабильными параметрами. Это устраняет помехи и повышает качество энергии. При отключении основного источника питания ИБП переключается на аккумуляторные батареи и питает дата-центр, пока в работу включаются ДГУ.

Но что, если из строя выйдет какой-то из элементов: выпрямитель, инвертор или аккумуляторные батареи? На этот случай в каждом ИБП есть механизм обходного пути, или байпас. С ним устройство продолжает работу в обход основных элементов, сразу от входного напряжения. Также байпасом пользуются, когда нужно выключить ИБП и вывести его в ремонт.

STS в ИБП нужен, чтобы безопасно перейти на байпасный ввод. Если коротко, то STS контролирует параметры сети на входе и на выходе, дожидается, когда они совпадут, и переключается в безопасных условиях.

АВР в стойке

Итак, к стойке подведены два ввода электропитания. Если у вашего оборудования два блока питания, вы спокойно подключаете его к разным PDU, и пропадание одного ввода вам не страшно. А если у вашего сервера один блок питания?
В стойке АВР используют, чтобы профит от двух вводов не пропал даром. При проблемах с одним из вводов АВР переключает нагрузку на другой ввод.

Дисклеймер: Если можете, избегайте оборудования с одним блоком питания, чтобы не создавать точку отказа в системе. Дальше мы покажем, в чем недостатки такой схемы подключения.

Задача АВР в стойке — переключить оборудование на рабочий ввод так быстро, чтобы в его работе не было перерыва. Нужную для этого скорость нашли опытным путем: не больше 20 мс. Посмотрим, как это обнаружили.

Сбои в работе серверного оборудования происходят из-за провалов напряжения (из-за работ на подстанциях, подключения мощных нагрузок или аварий). Чтобы проиллюстрировать, как оборудование выдерживает разную амплитуду и длительность перепадов напряжения, разработали кривые безопасной работы электрооборудования CBEMA (Computer and Business Equipment Manufacturers Association). Сейчас они известны как кривые ITIC (Information Technology Industry Council), их варианты включены в стандарты IEEE 446 ANSI (это аналог наших ГОСТов).

Сверимся с графиком. Наша задача, чтобы устройства работали в «зеленой зоне». На кривой ITIC мы видим, что оборудование готово «терпеть» провал максимум 20 мс. Поэтому мы ориентируемся, чтобы АВР в стойке отрабатывал за 20 мс, а лучше — еще быстрее.


Источник: meandr.ru.

Устройство АВР. Типовой АВР (ATS) в стойке нашего ЦОДа занимает 1 юнит и выдерживает нагрузку 16 А.

На дисплее видим, от какого ввода питается АВР, сколько подключенные устройства потребляют в амперах. Отдельной кнопкой выбираем, отдать приоритет первому или второму вводу. Справа — порты для подключения к АВР:

  • Ethernet port — подключить мониторинг;
  • Serial port — зайти через ноутбук и посмотреть в логах, что происходит;
  • USB — вставить флешку и обновить прошивку.

Порты взаимозаменяемые: можно выполнить все эти операции, если есть доступ хотя бы к одному из них.

На тыльной стороне — вилки для подключения основного и резервного вводов и розеточная группа для подключения ИТ-оборудования.

Подробные характеристики АВР мы смотрим через веб-интерфейс. Там настраивается чувствительность переключения и видны логи.


Веб-интерфейс АВР.

Установка и подключение АВР. Устанавливать АВР по высоте лучше в середину стойки. Если мы заранее не знаем комплектацию стойки, то так оборудование с одним блоком питания сможет дотянуться проводами и с нижней, и с верхней части.

А вот дальше есть нюансы: глубина стандартной стойки гораздо больше, чем глубина АВР. Мы рекомендуем установить его как можно ближе к холодному коридору по двум причинам:

    Доступ к передней панели. Если установить АВР ближе к горячему коридору, мы увидим индикацию, но не сможем подключиться к нему через порты. А значит, не сможем посмотреть логи или перезагрузить устройство.

  • потоками воздуха, которые дуют на него извне;
  • крепежами, которые уводят лишнее тепло.

Если установить АВР со стороны горячего коридора и вдобавок зажать его пирогом из серверов, то мы получим печку. В лучшем случае у АВР сгорят мозги и он потеряет связь с внешним миром, в худшем — начнет хаотично переключать нагрузку или бросит ее.


АВР парится лицом к горячему коридору.

Был случай. Инженер на обходе услышал нехарактерные щелчки.
В недрах горячего коридора под грудой серверов обнаружился АВР, который постоянно переключался с основного ввода на резервный.

АВР заменили. Логи показали, что целую неделю он переключался каждую секунду — итого более полумиллиона коммутаций. Вот как это было

Какие еще АВР бывают в стойке

Вводный ATS для стойки. В нашем ЦОДе такой АВР выступает единственным источником распределения питания в стойке: работает как АВР+PDU. Занимает несколько юнитов, выдерживает нагрузку 32 А, подключается промышленными разъемами и может питать до 6 КВт оборудования. Использовать его можно, когда нет возможности смонтировать стандартные PDU, а одноблочное оборудование в стойке не обслуживает критичные нагрузки.

Cтоечный STS. STS в стойке используется для оборудования, чувствительного к перепадам напряжения. Этот АВР переключается быстрее, чем ATS.


Этот конкретный STS занимает 6 юнитов и у него немного «винтажный» интерфейс.

Мини-АВР. Бывают и такие малышки, но у нас в ЦОДе такого не водится. Это мини-АВР для одного сервера.


Этот АВР подключается прямо в блок питания сервера.

Как мы ищем идеальный АВР

Мы тестируем много разных АВР и проверяем, как они ведут себя в условиях высоких температур.

Вот как издеваемся над АВР, чтобы это проверить:

  • подключаем к нему регистратор качества сети, сервер и еще несколько устройств для нагрузки;
  • изолируем стойку заглушками или пленкой, чтобы достичь высокой температуры;
  • нагреваем до 50°С;
  • поочередно отключаем вводы по 20 раз;
  • смотрим, не было ли провалов питания, как себя чувствует сервер;
  • если АВР проходит тест — нагреваем до 70°С.
Вам будет интересно  Станок для производства саморезов


Фото тепловизором с одного из испытаний.


Анализатор сети фиксирует напряжение с течением времени. На записи видим, сколько длилось переключение: на этот момент синусоида прервалась

Кстати, берем АВР на тест: проверим ваше устройство на прочность и расскажем, что получилось

АВР в стойке: скрытая угроза

Главная проблема с АВР в стойке в том, что он умеет только переключать нагрузку с основного на резервный ввод, но не защищает от короткого замыкания или перегрузки. Если на блоке питания происходит короткое замыкание, то по защите сработает автоматический выключатель уровнем выше: на PDU или в распределительном щите. В результате один ввод отключается, АВР это понимает и переключается на второй ввод. Если короткое замыкание еще остается, сработает автоматический выключатель второго ввода. В итоге из-за проблемы на одном оборудовании может обесточиться вся стойка.

Так что еще раз повторю: тысячу раз подумайте, прежде чем устанавливать АВР в стойку и использовать оборудование с одним блоком питания.

Да будет свет! Система резервного питания в загородном доме

Ничего не может быть хуже, чем отключение света зимой. Любой из загородных жителей рано или поздно сталкивается с ситуацией, когда лампочки гаснут, скважинный насос перестаёт качать воду, а батареи системы отопления остывают на глазах. Время задействовать резервное питание!

Большинство скажет: надо просто завести генератор и подключить к нему приборы и оборудование в доме. Не всё так просто. Пользователи forumhouse.ru хорошо знают, как запустить генератор на морозе.

Но есть и другое решение проблемы с перебоями электричества: система резервного питания дома или сокращённо – СРП.

Для правильного выбора такой системы питания необходимо понять, чем она отличается от системы автономного питания (САП).

СРП используется в том случае, когда дом подключён к основной электросети. При отключении основного питания резервное электропитание «подхватывает» основных потребителей электроэнергии: скважинный насос, котёл, холодильник, компьютер, телевизор и другое электрооборудование. САП – это основная система электропитания для дома, применяемая при полном отсутствии основной электросети.

Переходим к выбору системы резервного питания. По мнению Андрей-АА, существует 4 основных типа резервного питания для дома.

  • Если сеть отключается ненадолго, но суммарно в месяц более чем на 10 часов, то оптимальной будет система, состоящая из инвертора, зарядного устройства и блока аккумуляторов, заряжаемых от сети.
  • Если сеть отключают менее чем на 10 часов в месяц, то выгодней система из электрогенератора с двигателем внутреннего сгорания (ДВС), оборудованного системой автоматического пуска.
  • Если сеть отключают часто и надолго, или когда напряжение в сети слишком низкое, то оптимальной является система, состоящая из генератора, блока аккумуляторов, зарядного устройства и инвертора.
  • Если требуемую мощность можно ограничить 1-1,5 кВт, то в качестве резервной системы питания можно использовать автомобиль с подключённым к нему инвертором.

Остановимся подробнее на третьем варианте. Пользователь с ником galexy456 предлагает пошаговый план создания бюджетной системы резервного питания для дома.

1 В электрический щиток заводятся два кабеля из подсобного помещения. Первый кабель необходим, чтобы подать электричество на инвертор. Второй – чтобы передать электричество от инвертора в дом.

У меня на улице смонтирован маленький щиток, в котором реализована схема автоматического ввода резерва, или сокращённо АВР

2 В подсобное помещение ставим инвертор, аккумуляторы и коммутируем все устройства.

Я рекомендую выбирать инвертор с синусоидальным выходным напряжением.

В случае отключения электричества такая система работает следующим образом. АВР самостоятельно и быстро – так, что приборы не успевают отключиться, переключает питание с основного на резервное.

Теперь все подключённые энергопотребители продолжают работать от аккумуляторов и инвертора. Если энергоснабжение отсутствует больше 5-6 часов, то, не дожидаясь полного разряда аккумуляторов (от этого сильно сокращается срок их службы), для продолжения бесперебойного питания необходимо вручную завести генератор.

Существуют системы резервного питания с автоматическим запуском генератора, установленным в отапливаемом подсобном помещении и снабжённом принудительным отводом выхлопных газов. Главный недостаток таких СРП – это их высокая цена.

После запуска генератора инвертор переводит нагрузку на питание приборов от него и одновременно начинает заряжать аккумуляторы. Таким образом, продлевается время работы системы и экономится моторесурс генератора, т.к. он работает не в постоянном режиме.

Любая, даже самая продвинутая и дорогая система резервного питания, в первую очередь, приучает экономить энергоресурсы в доме, т.к. от этого напрямую зависит время работы системы резервного электроснабжения дома.

  • заменить все лампочки в доме на энергосберегающие;
  • проложить вторую, резервную линию электросети, к которой, в случае отключения электричества, можно подключить самое необходимое оборудование в доме;
  • как следует утеплить дом, чтобы уменьшить затраты на отопление;
  • при работе резервной системы питания не пользоваться мощными электроприборами: утюгом, электрочайником, пылесосом.

Включение фена, чайника или утюга на 3-7 минут сильно не разрядит аккумуляторы, но глажку или работу с мощным электроинструментом лучше не допускать.

Для построения СРП нагрузку в доме можно условно разделить на три части:

  1. Отопление.
  2. Водонагревательные приборы.
  3. Приборы, требующие обязательного резервного питания, а именно:
  • освещение;
  • циркуляционные насосы отопления;
  • скважинный насос и насосная станция;
  • компьютер;
  • холодильник, телевизор, Интернет.

Также в качестве резервной системы питания можно использовать и автомобиль. Для этого необходимо:

  1. Приобрести инвертор с синусоидальным выходом на 12-220 В мощностью до 2 кВт с защитой от перегрузки по току или по мощности.
  2. Прогреть двигатель автомобиля.
  3. Выключить двигатель.
  4. Подсоединить инвертор непосредственно к клеммам аккумулятора (не отсоединяя его от автомобиля).
  5. Завести двигатель.
  6. Подсоединить нагрузку к инвертору.
  7. После отключения нагрузки необходимо оставить двигатель авто заведённым, чтобы он подзарядил аккумулятор.

Я постоянно использую энергосистему своего авто в качестве резервного источника электричества на даче. Максимальное время работы в таком режиме составляло 10 часов, работали все основные потребители электрической энергии в доме.

Пользователи сайта FORUMHOUSE могут узнать, как самостоятельно сделать резервную систему питания питания. Вся информация по расчёту автономной системы питания собрана в этом дневнике. Автоматический запуск и использование генератора «от А до Я» описан в этой теме.

А в этом видео рассказывается о том, как инвертор и блок аккумуляторов могут увеличить электрическую мощность в доме.

Ручное управление и АВР для генератора в сети частного дома

Проблемы с перебоями в энергоснабжении существуют, пожалуй, со времен открытия электричества и знакомы каждому. Одним из выходов из создавшегося положения может стать резервный электрогенератор, на который можно перейти до устранения проблемы. Переключиться на него несложно и вручную, но если объект ответственный или у вас нет желания возиться с рубильниками, эту задачу можно возложить на автомат — АВР для генератора.

Требования к оборудованию резервного питания

Необходимость перехода на резервный источник, как правило, вызвана либо аварийной, либо нештатной ситуацией. В связи с этим нередко все переключения осуществляются неквалифицированным персоналом и зачастую в сложных условиях — в темноте, тесноте, под открытым небом. Именно поэтому требования к резервирующему оборудованию достаточно жесткие:

  1. Безопасность для оператора. Все резервное электрооборудование не должно иметь открытых токоведущих и движущихся частей (за исключением приводных ручек), а его металлические шасси и кожухи нужно заземлить. Отправляя даже неподготовленного человека на переключение, вы должны быть уверены, что он не попадет под напряжение и не повредит руки какими-нибудь фиксаторами или тягами, даже работая при плохом освещении.
  2. Безопасность для электрооборудования. Схема коммутации должна быть такой, чтобы даже при не полностью или не в той последовательности выполненном переключении оператор не смог создать аварийной ситуации — подать встречное напряжение, переключить не все фазы, вызвать короткое замыкание и пр. Все это обеспечит сохранность основных и резервных цепей даже при неумелых или ошибочных действиях человека.
  3. Оперативность. Переход на резервный генератор должен требовать минимум манипуляций и производиться по возможности быстро. Сами устройства коммутации должны быть максимально доступны, чтобы к ним не нужно было взбираться по стремянкам или лазить по люкам. Это особенно важно для ответственных объектов и специального электрооборудования (холодильные установки, системы микроклимата, котлы, печи и пр.).
  4. Наглядность и простота. Конструкция переключателей и рубильников должна быть максимально простой, а схема переключения — наглядной и интуитивно понятной. Это существенно сокращает вероятность ошибки человека и выхода из строя оборудования. Такие схемы проще обслуживать, а ремонт при их поломке будет стоить дешевле.

Стоит отметить, что каким бы методом переключения на резервное питание вы ни пользовались, ручным или автоматическим, все условия должны быть по возможности максимально соблюдены. Ведь именно от этого будет зависеть не только обеспечение бесперебойного питания объекта, но и безопасность людей.

Методы подключения резервного генератора

В зависимости от конкретных требований и возможностей (наличие или отсутствие дежурного персонала, его квалификации, финансов предприятия и пр.) переход на резервный источник может осуществляться одним из трех способов:

  1. Ручное переключение.
  2. Полуавтоматический переход.
  3. Автоматическое переключение.

Для небольших объектов и частных домов вполне подойдет ручная схема подключения бензогенератора к домашней сети. Оборудование таких систем стоит недорого, а присутствие людей в жилом доме подразумевается само собой. Полуавтоматический способ переключения требует участия оператора на том или ином этапе коммутации, а значит, он отлично подойдет как для частных домов, так и для объектов с постоянным, пусть даже неквалифицированным персоналом.

Полностью автоматический переход обычно используется на автоматизированных и ответственных объектах или участках, а также там, где постоянный персонал отсутствует.

Ручное подключение

Для реализации этого метода достаточно обычного перекидного рубильника на нужное количество полюсов и резервного генератора, подходящих мощности и напряжения.

Схема подключения генератора к сети дома через перекидной рубильник

Для того чтобы запитать дом от резервного источника, здесь достаточно лишь повернуть ручку рубильника, на оси которой находятся переключатели А и В. При этом ножи устройства сначала отключат потребителя от основного источника (сети), и лишь затем подключат его к резервному (генератору). В схеме необходимо коммутировать однофазную цепь, рубильник имеет два переключателя или, как принято говорить, полюса. Но существуют и многополюсные приборы, коммутирующие трехфазные линии.

Трехполюсные перекидные рубильник (слева) и переключатели

Первым на рисунке приведен двухпозиционный рубильник, два последних — переключатели, имеющие по три позиции. Рубильник позволяет подключить нагрузку либо к сети, либо к резервному источнику. Третьего не дано. Трехпозиционные приборы имеют третье (промежуточное) положение, в котором нагрузка уже отключена от сети, но еще не подключена к генератору.

Если потух свет, рубильник переключается на бензиновый или дизельный генератор и этот самый генератор запускается. Во время пуска на выходе напряжение частота начнут плавно увеличиваться от нуля до номинала.

В это время двигатели электроприборов сгорят. Будь в вашем распоряжении трехпозиционный переключатель, вы бы смогли сначала просто отключить дом от сети, потом спокойно запустить генератор, вывести его на режим, а уж затем переключиться к резервному электропитанию.

Полуавтоматический переход на другой источник

Этот метод подразумевает автоматизацию тех или иных (не всех) процессов переключения. Участие человека в таком типе переключения все равно необходимо, но сама коммутация становится намного проще и безопаснее как для человека, так и для оборудования.

Автомат переключения на резерв

Этот узел, который несложно собрать своими руками, предназначен для автоматического переключения нагрузки с основного на резервный источник при пропадании первого и наоборот. Для его реализации понадобится электромагнитный пускатель или реле, срабатывающие от 220 В и с контактами, выдерживающими ток домовых потребителей. В качестве примера взято электромагнитное реле РЭК77/3 с тремя группами переключающих контактов:

Электромагнитное реле РЭК77/3 с обмоткой 220 В / 50 Гц

Устройство выдерживает ток до 10 А, и вполне может использоваться в качестве автоматического переключателя на небольшом объекте или в частном доме. Схема же автомата будет выглядеть следующим образом:

Здесь реле исполняет роль автоматического перекидного выключателя. Одна группа контактов переключает фазу, другая — ноль, третья не используется. Обмотка реле питается от основной сети. В исходном положении в линии «Сеть» присутствует напряжение, реле включено и подает напряжение на нагрузку. При пропадании сети реле отпускает и переключает нагрузку на питание от генератора. При возобновлении электроснабжения реле К1 вновь срабатывает, и схема возвращается к питанию от основного источника.

Это полный автомат ввода резерва, но лишь в том случае, когда сам резервный источник всегда под напряжением. Если же в качестве резерва используется бензогенератор, а это чаще всего именно так, то понятно, что система будет полуавтоматической — генератор придется запускать вручную.

С запуском бензогенератора

Эта конструкция в состоянии самостоятельно запустить генератор. Единственное условие — сам генератор должен иметь стартер и дистанционную систему пуска хотя бы кнопкой. Для реализации этой идеи понадобится еще одно реле и пусковой таймер произвольной конструкции:

Подключение бензогенератора к сети дома, схема с автостартом

Здесь реле К1 исполняет те же функции — переключает нагрузку при пропадании основного напряжения. Но дополнительно оно своей третьей группой контактов подает напряжение на стартер и реле времени. Реле периодически пытается завести генератор, с его запуском появляется напряжение на резервной линии. При этом срабатывает реле К2 и своими контактами отключает систему автозапуска бензогенератора.

Но и эта конструкция не является полным автоматом. Во-первых, если генератор по каким-либо причинам не запустится (холодно, плохая регулировка пуска, нет топлива и пр.), устройство будет пытаться заводить его до тех пор, пока не сожжет стартер или не посадит пусковой аккумулятор. Во-вторых, при появлении основного напряжения автоматика переключит нагрузку на него, но не заглушит генератор.

Полный автомат ввода резерва

Для того чтобы полностью автоматизировать процесс, необходимо нечто большее, чем 2 реле — полноценная система контроля. Такая система существует и называется АВР — Автоматический Ввод Резерва. Создаются подобные устройства на базе программируемых AVR контроллеров, имеют в своем составе множество датчиков обратной связи и регуляторов. Сделать такое оборудование самостоятельно сможет лишь квалифицированный специалист.

Но оснастить свой дом или любой другой объект подобным автоматом можно — они есть в продаже, хотя и стоят недешево. Зато список функций, выполняемых стандартным АВР, достаточно велик:

  1. Отключение потребителей от основного источника при пропадании в нем питающего напряжения.
  2. «Умный» запуск генератора с контролем неудачного старта.
  3. Вывод бензогенератора на рабочий режим.
  4. Подключение потребителей к линии генератора.
  5. Подсчет моточасов, контроль температуры двигателя, расхода топлива и пр.
  6. Контроль напряжения, частоты и тока с автоподстройкой режима работы генератора.
  7. Автоматическое переключение на основной источник при возобновлении штатного электроснабжения.
  8. Остановка бензогенератора.
  9. Зарядка аккумулятора стартера.

Сегодня купить блок АВР можно как в комплекте с бензогенератором, так и отдельно. Первый вариант, конечно, проще (узлы адаптированы и подключены друг к другу уже производителем), но финансово неоправдан, если генератор уже есть. В этом случае достаточно приобрести АВР, но перед покупкой обязательно проконсультируйтесь со специалистом о том, сможет ли конкретная модель автомата работать именно с вашим генератором. Структурная же схема подключения генератора с АВР в домовую сеть будет выглядеть примерно так:

Общая схема подключения генератора с блоком АВР

Originally posted 2018-07-04 07:16:31.

Автомат переключения на резервное питание

Плавкие предохранители (Плавкие вставки) предназначены для защиты силовых, сигнальных и управляющих электрических цепей

/>Маркировка кабельных линий

Все кабельные трассы, согласно требованиям нормативных документов, должны быть промаркированы бирками с указанием на

/>Щит управления вентиляцией

Щит управления вентиляцией (ЩУВ) предназначен для автоматического управления работой приточно-вытяжной вентиляции, как

/>Tia Portal — язык программирования SCL. Часть2

Продолжим тему изучения программирования на SCL в среде Tia Portal, начатую в прошлой статье. Сегодня мы рассмотрим

Контроллеры Modicon M171/M172

В данной обзорной статье рассмотрим контроллеры фирмы Schneider Electric серии Modicon M171/M172. Данная линейка

2018-08-23 Статьи, Схемы 3 комментария

АВР (Автоматический ввод резерва) представляет собой систему обеспечения бесперебойной работы энергопотребителей. В случае пропадания основного источника питания АВР автоматически запускает резервный ввод.

Согласно ПУЭ все потребители электрической энергии делятся на три категории:

  • I категория — к потребителям этой группы относятся те, нарушение электроснабжения которых может повлечь за собой опасность для жизни людей, значительный материальный ущерб, угрозу для безопасности государства, нарушение сложных технологических процессов и пр.

Все потребители, относящиеся к данной категории должны быть запитаны от двух независимых источников питания ( это могут быть две трансформаторные подстанции, либо ТП и дизель генератор). Электроснабжение, при отключении одного из источников, должно прерываться лишь на время автоматического переключения на второй ввод. Очевидно, что в данном случае без системы АВР просто не обойтись.

Также к первой категории относят особую группу потребителей, которые должны бесперебойно функционировать с целью безаварийного останова производств для предотвращения возможной опасности жизни людей, пожаров и взрывов. Для этой группы предусматривается три независимых источника питания ( две ТП и дизель генератор). Для данной группы также необходимо использовать АВР.

  • II категория — к этой группе относят электроприёмники, перерыв в питании которых может привести к массовому недоотпуску продукции, простою рабочих, механизмов, промышленного транспорта

Все объекты, попадающие в данную категорию, также должны быть запитаны от двух независимых источников питания, но в отличии от первой категории, допускается некоторое время простоя до восстановления электроснабжения. То есть в данном случае могут применяться автоматические системы ввода, но допускается и ручное переключение на резервный ввод.

  • III категория — все остальные потребители электроэнергии.

И наконец третья категория энергопотребителей, для которой электроснабжение осуществляется от одного источника питания. При этом перерыв в электроснабжении не должен превышать одних суток. В данную категорию попадают магазины, офисные помещения, частные дома и т.д. Хотя для данной категории системы АВР вроде как и не предусмотрены, но согласитесь, что находиться без электричества в течении суток не очень-то комфортно, поэтому по мере возможности АВР находят применение и здесь.

Как видно из всего вышеперечисленного устройства АВР являются неотъемлемой частью систем обеспечения бесперебойного питания электроприемников.

По типу исполнения АВР разделяют на

  • АВР одностороннего действия

— в данном исполнении присутствует два ввода — основной и резервный. Оба они подключены к одной секции, к которой подключена и нагрузка. В нормальном режиме в работе находится только основной ввод, а в случае неисправности устройство АВР отключает основной ввод и задействует в работу резервный ввод. Как только на основном вводе восстановится напряжение, система автоматически переключается на него. То есть система имеет приоритет основного ввода.

  • АВР двухстороннего действия

— в данной схеме задействованы два ввода, каждый из которых подключен к отдельной секции. Соединение двух секций выполнено с помощью секционного выключателя. Если на одной секции пропадает питание, то она автоматически будет подключена к рабочей секции. По данной схеме оба ввода являются равноценными и не имеют приоритета.

  • АВР двухстороннего действия + ввод от ДГУ.

В данном случае все работает также, как и в предыдущей схеме. Главное отличие — это присутствие третьего ввода от дизель генератора. Команда на запуск ДГУ дается при пропаже питания на обоих вводах.

В зависимости от типа исполнения система АВР может выполнять функции контроля состояния автоматических выключателей на вводе и выводе, защиту от повышенного напряжения, контроль последовательности чередования фаз, выбор автоматического или ручного запуска, задание временной выдержки на включение и отключение, индикацию состояния сети, дистанционную настройку и управление, передачу состояния устройства посредством SMS-сообщений по GSM связи и т.д. Функционал АВР может быть весьма обширным, здесь все зависит от реализованной схемы.

А схем исполнения устройств АВР много. В качестве коммутирующих устройств используются контакторы, автоматические выключатели либо рубильники с мотор-приводами, в качестве органов управления и контроля применяются реле контроля фаз, программируемые реле, блоки управления автоматическим переключением.

Несмотря на такое разнообразие, в основе всех устройств АВР лежит одинаковая логика работы — контроль параметров сети и автоматическое переключение на необходимый ввод.

Для начала рассмотрим самый простой пример с применением двух автоматических выключателей и двух контакторов.

При наличии напряжения на первом вводе питание через нормально-замкнутый контакт КМ2.1 приходит на катушку контактора КМ1. Силовые контакты КМ1 замыкаются и вся нагрузка таким образом будет подключена на 1 ввод. При исчезновении питания на 1 вводе контакт КМ1.1 вернется в исходное состояние, напряжение будет подано на катушку КМ2.1. Силовые контакты КМ2.1 замкнутся и питание потребителей будет осуществляться от 2 ввода. При восстановлении питания 1 ввода ничего происходить не будет, пока не пропадет питание со 2 ввода. То есть схема не имеет приоритета вводов и для того чтобы снова перейти на 1 ввод, придется вручную отключить автомат QF2.

На самом деле такая схема вряд ли может быть предложена для реализации, так как имеет целый ряд недостатков. Во первых контакторы не имеют механической блокировки, нет индикации состояния сети, отсутствует защита от повышенного — пониженного напряжения, в случае трехфазного исполнения данной схемы необходим контроль чередования фаз. Так что это скорее пример, показывающий общий принцип работы АВР, чем действительно рабочая схема.

Но если добавить в данную схему реле напряжения, то она примет уже вполне рабочий вид.

Во первых реле напряжения осуществляет защиту от повышенного — пониженного напряжения, а во вторых задает приоритет основного ввода. При появлении питания на 1 вводе, контакт реле KSV разомкнет цепь питания катушки КМ2 и произойдет автоматическое переключение со 2 ввода на основной 1 ввод.

Еще один пример, на этот раз трехфазной схемы АВР.

В отличии от предыдущего примера, данная схема имеет уже полностью законченный вид. Помимо контроля напряжения, здесь присутствует и индикация состояния вводов, за которую отвечают лампы HL1 и HL2 и механическая блокировка контакторов ( пунктирная линия с треугольником). Помимо автоматических выключателей QF1 и QF2, защищающих силовые цепи, добавлены автоматы защиты цепей управления SF1,SF2.

Помимо релейной логики в устройствах АВР для управления и контроля часто применяются специализированные блоки управления резервным питанием, такие как БУАВР от компании НПП ВЭЛ, МАВР Меандр, AVR-02G Евроавтоматика ФиФ, ATS022 ABB и другие.

Одним из наиболее популярных на рынке является блок БУАВР.

БУАВР осуществляет функции контроля за минимальным и максимальным напряжением, контроль чередования фаз, ассиметрии фаз, обрыва одной или нескольких фаз, управления контакторами либо автоматическими выключателями с мотор приводами, индикацию состояния входов — выходов.

В зависимости от выбора режима БУАВР может работать:

  • В автоматическом режиме, с приоритетом 1 ввода
  • В автоматическом режиме, с приоритетом 2 ввода
  • В автоматическом режиме, без приоритета вводов
  • С постоянно включенным 1 вводом
  • С постоянно включенным 2 вводом

Для разных типов АВР выпускаются БУАВР различных исполнений — например одна из самых популярных моделей БУАВР1 применяется в схемах на два ввода с одной нагрузкой, БУАВР.С — в схемах на два ввода, две нагрузки с секционным выключателем, БУАВР.2С — на два ввода, две нагрузки с двумя секционными выключателями.

Ниже приведена схема АВР на два ввода с одной нагрузкой на контакторах с использованием блока БУАВР1.

В изначальном состоянии, в зависимости от режима работы, который задается переключателем на лицевой панели, блок БУАВР подключает нагрузку к одному из вводов. Если во время работы напряжение оказывается за пределами допустимых значений в течении заданного времени (уставки по напряжению и время выдержки выставляются с помощью шести переключателей Umin, t зад.откл, Umax, t восст, t зад.вкл, U min2), БУАВР отключает нагрузку от данного ввода и с заданной выдержкой времени переключается на второй ввод. Выходные реле блока БУАВР K1 и К2 используются для включения контакторов КМ1 и КМ2 соответственно. На лицевой панели БУАВР имеются светодиодные индикаторы, которые сигнализируют о наличии,отсутствии или недопустимых значениях напряжения на вводах 1 и 2 (верхние светодиоды) и состоянии выходов (нижние светодиоды).

Также в последнее время для различных схем АВР широко применяются программируемые реле, например Zelio Logic от Schneider Electric, Siemens Logo, Easy от Eaton.

Они позволяют расширить функционал стандартных схем АВР, более гибко настраивать алгоритм работы под собственные нужды, передавать информацию о состоянии устройства дистанционно и т.д. На основе программируемых реле можно строить различные схемы АВР, Schneider Electric даже издал брошюру с типовыми схемами с использованием Zelio Logic, но подробно останавливаться на них я не буду, возможно в будущем напишу отдельную статью.

Кстати надо заметить, что программируемые реле не имеют функции контроля напряжения, поэтому применение реле напряжения или контроля фаз необходимо.

Вообще различных решений АВР очень много и в рамках одной статьи не получится рассказать обо всем, поэтому в дальнейшем я планирую продолжить эту тему.

АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВА

В общем понимании смысл выражения заключается в автоматическом вводе в действие резервного оборудования, блоков, участков электрической цепи при отказе основных частей.

Наиболее же часто имеется ввиду обеспечение бесперебойного питания потребителей. Ряд устройств по тем или иным причинам не допускает перебоев электропитания.

В зависимости от параметров потребителей или питающей сети могут использоваться разные решения по обеспечению бесперебойного питания.

Категории потребителей, требующие автоматического резервирования питания.

По требованиям надежности электрического питания все потребители подразделяются на три категории.

К первой относятся такие, перерыв в работе которых может угрожать жизни и здоровью людей, безопасности государства, привести к большому материальному ущербу, нарушению работы коммунального хозяйства, перерывам в связи и коммуникации.

Потребители первой категории требуют обязательного резервирования электроснабжения от двух независимых друг от друга источников питания.

Также в состав первой группы потребителей входит особая группа, с более жесткими требованиями по надежности и которая требует наличия трех взаимно резервируемых источников питающего напряжения.

Третьим источником обычно служит резервная электростанция, поэтому автоматика резервирования должна обеспечивать надежный запуск электрогенератора при критической ситуации на питающих линиях.

Принцип автоматического переключения питания на резервный источник

Эта схема основана на работе таймера NE555 в бистабильном режиме. В этом режиме выходной сигнал таймера бывает либо высоким, либо низким в зависимости от состояния выводов триггера и сброса.

Выход таймера подключен к транзистору, который работает в ключевом режиме в зависимости от выходного сигнала таймера.

АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВА

Два светодиода, соединенных последовательно, используются в качестве нагрузки. При закрытом транзисторе светодиоды приводятся в действие от источника питания AC/DC, а при открытом транзисторе светодиоды приводятся в действие от аккумулятора. В качестве переключателя можно использовать реле, катушка которого запитана от стабилизатора U1.

Проектирование схемы включает в себя две основные части:

1. Конструкция стабилизатора:

Стабилизатор построен с использованием трансформатора, мостового выпрямителя и стабилизатора напряжения.

Выбор стабилизатора напряжения. Поскольку нам необходимо запитать два последовательно соединенных светодиода вместе с диодом Шоттки, то мы выбираем регулятор напряжения LM7809, стабилизирующий напряжение на уровне 9 В. Так как напряжение на входе стабилизатора должно быть не менее 12 В, то мы выберем входное напряжение около 20 В. Соответственно сетевой трансформатор должен иметь напряжение вторичной обмотки около 20В.

Далее подбираем диоды для мостового выпрямителя. Так как пиковое напряжение на вторичной обмотке трансформатора составляет около 28В, то общее пиковое обратное напряжение (PIV) моста будет около 112В. Следовательно, нам нужны диоды с номинальным PIV более 112В. Хорошим вариантом здесь будет использовать диоды 1n4007, имеющие PIV около 1000В.

Заключительный этап — выбор конденсатора фильтра. Для конденсатора — пикового напряжения 26В и минимальное входное напряжение регулятора 12В, допустимая пульсация составляет около 14В. Значение емкости рассчитывается по формуле C = I (Δt / ΔV), где I сумма тока покоя регулятора напряжения и фактического тока нагрузки. Подставляя данные значения, мы получаем емкость порядка 17 мкФ. Установим электролитический конденсатор емкостью 20 мкФ.

2. Мультивибратор c использованием таймера NE555:

Когда таймер NE555 работает в бистабильном состоянии, то на его выходе может быть либо высокий либо низкий сигнал. Здесь мы используем простую логику: когда вывод TRI заземлен, то на выходе высокий логический уровень, а когда вывод RST заземлен, то на выходе будет низкий логический уровень.

Вход таймера NE555 соединен с базой транзистора BC547.

Платы АВР

АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВА

Платы АВР применяются для реализации схем автоматического включения резерва. Могут поставляться в составе НКУ с системой АВР или в виде отдельного готового изделия для последующего монтажа. Конструктивно представляет собой монтажную плату, на которой смонтированы устройства контроля и управления и размещены клеммные зажимы для подключения контрольных и сигнальных кабелей от управляемых автоматических выключателей с электроприводом.

Схема АВР выполняется на базе интеллектуального логического реле Zelio Logic производства компании Шнейдер Электрик (Франция). Применение программируемого реле делает возможным реализацию логики управления НКУ с несколькими вводами, с одной или несколькими системами шин (с секционированием), с подключением дизельных электростанций. Реле Zelio Logic обеспечивает гибкость при настройке различных алгоритмов работы схемы АВР, задании последовательности переключений и вводе уставок времени задержки на включение/отключение аппаратов в соответствии с техническими требованиями заказчика.

Плата АВР может дополняться выносным дисплеем для визуализации работы АВР, возможности ручного управления и изменения уставок времени, а также GSM-модемом для организации дистанционного контроля и управления системой автоматического включения резерва.

АВР классификация

АВР одностороннего действия. В таких схемах присутствует одна рабочая секция питающей сети, и одна резервная. В случае потери питания рабочей секции АВР автоматически подключит резервную секцию.

АВР двухстороннего действия. В этой схеме любая из двух линий может быть как рабочей, так и резервной.

АВР с восстановлением. Если на отключенном вводе вновь появляется напряжение, то с выдержкой времени АВР автоматически переключиться на основной источник питани, а секционный выключатель отключается. Кратковременная параллельная работа двух источников не допустима, сначала АВР отключит секционный выключатель, а затем АВР включит вводной выключатель. Схема питания вернулась в исходное состояние.

Общие требования к АВР

  • АВР должно срабатывать за минимально возможное после отключения рабочего источника энергии время .
  • АВР должно срабатывать всегда, в случае исчезновения напряжения на шинах потребителей, независимо от причины. В случае работы схемы дуговой защиты АВР может быть блокировано, чтобы уменьшить повреждения от короткого замыкания. В некоторых случаях требуется задержка переключения АВР. К примеру, при запуске мощных двигателей на стороне потребителя, схема АВР должна игнорировать просадку напряжения.
  • АВР должно срабатывать однократно. Это требование обусловлено недопустимостью многократного включения резервных источников в систему с не устранённым коротким замыканием.

Реализацию схем АВР осуществляют с помощью средств РЗиА: реле различного назначения, цифровых блоков защит (контроллер АВР), переключателей — изделий, включающих в себя механическую коммутационную часть, микропроцесорный блок управления, а также панель индикации и управления.

Все потребители электрической энергии делятся на три категории:

  • I категория — к потребителям этой группы относятся те, нарушение электроснабжения которых может повлечь за собой опасность для жизни людей, значительный материальный ущерб, опасность для безопасности государства, нарушение сложных технологических процессов и пр.
  • II категория — к этой группе относят электроприёмники, перерыв в питании которых может привести к массовому недоотпуску продукции, простою рабочих, механизмов, промышленного транспорта.
  • III категория — все остальные потребители электроэнергии.

Таким образом, кроме неудобств в повседневной жизни человека, длительный перерыв в электропитании может привести к угрозе жизни и безопасности людей, материальному ущербу и другим, не менее серьезным последствиям. Бесперебойное питание можно реализовать, осуществив электропитание каждого потребителя от двух источников одновременно (для потребителей I категории так и делают), однако подобная схема имеет ряд недостатков:

  • Токи короткого замыкания при такой схеме гораздо выше, чем при раздельном питании потребителей.
  • В питающих трансформаторах выше потери электроэнергии
  • Релейная защита сложнее, чем при раздельном питании.
  • Необходимость учета перетоков мощности вызывает трудности, связанные с выработкой определенного режима работы системы.
  • В некоторых случаях не получается реализовать схему из-за того, что нет возможности осуществить параллельную работу источников питания из-за ранее установленной релейной защиты и оборудования.

В связи с этим возникает необходимость в раздельном электроснабжении и быстром восстановлении электропитания потребителей. Решение этой задачи и выполняет АВР. АВР может подключить отдельный источник электроэнергии (генератор, аккумуляторная батарею) или включить выключатель, разделяющий сеть, при этом перерыв питания может составлять всего 0.3 — 0.8 секунд.

При проектировании схемы АВР, допускающей включение секционного выключателя, важно учитывать пропускную способность питающего трансформатора и мощность источника энергии, питающих параллельную систему. В противном случае может получиться так, что переключение на питание от параллельной системы выведет из строя и её, так как источник питания не сможет справиться с суммарной нагрузкой обеих систем. В случае если невозможно подобрать такой источник питания, обычно предусматривают такую логику защиты, которая отключит наименее важных потребителей тока обеих систем.

АВР разделяют на:

  • АВР одностороннего действия. В таких схемах присутствует одна рабочая секция питающей сети, и одна резервная. В случае потери питания рабочей секции АВР подключит резервную секцию.
  • АВР двухстороннего действия. В этой схеме любая из двух линий может быть как рабочей, так и резервной.
  • АВР с восстановлением. Если на отключенном вводе вновь появляется напряжение, то с выдержкой времени он включается, а секционный выключатель отключается. Если кратковременная параллельная работа двух источников не допустима, то сначала отключается секционный выключатель, а затем включается вводной. Схема вернулась в исходное состояние.
  • АВР без восстановления.

Схемы с двумя рабочими вводами и секционированием нагрузки

В таких схемах каждый ввод находится под нагрузкой (является рабочим) и питает определенную группу электроприемников. В случае отсутствия напряжения на одном из вводов секционирующий автоматический выключатель или контактор подключает к работающему вводу обесточенную секцию. Вся нагрузка продолжает получать питание по одной из линий.

Панели с такими схемами АВР устанавливаются в жилых и общественных зданиях, на вводах производственных объектов.

Существуют разновидности указанных схем с различным контролем входных параметров напряжения, с тремя вводами, с автоматическим или ручным обратным переключением, с дополнительной сигнализацией или отключением в целях обеспечения пожарной безопасности и т.д.

  • Сила тока: до 16А включительно
  • Напряжения сети: 220В переменного тока
  • Частота сети: 50 или 60 Гц
  • Скорость переключения: 16 мс
  • Задержка обратного переключения: 30 секунд
  • Температура эксплуатации: – 20 … +50°С
  • Влажность: до 95%
  • Класс защита корпуса: IP65
  • Размеры устройства: 120х255х75 мм
  • Вес: 800 грамм
Вам будет интересно  Автоматическое повторное включение — назначение и принцип работы

Применяются для маломощной критической нагрузки: компьютерное оборудование, освещение, отопительная техника (газовые котлы, твердотопливные котлы), развлекательные устройства (видео- и аудиотехника), а также: инженерные коммуникации, охрана, видеонаблюдение, пожарная охрана, аварийное оповещение и другие.

Применяются для наземного, морского и речного транспорта, где используется оборудование 220В 50Гц. В момент стоянки, когда подключена сеть 220В, нагрузка подключается к сети напрямую.

Устройства FILAX 2 не предназначены для работы с индуктивной нагрузкой: двигателями, компрессорами, насосами и бытовыми приборами мощностью больше 2 кВт или имеющими стартовый ток 16А и больше.

Установка и подключение Filax

Установка должна проводиться в сухом вентилируемом помещении.

Подключение кабелей приоритетного и резервного источника питания требуется произвести так, как показано на изображении (Рис. 1). Аналогично к клеммам «Нагрузка» подключают потребители переменного тока.

Важно! При нагрузке меньше 850 Ватт контакты «L» и «N» должны быть в разомкнутом состоянии.

АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВА

Рисунок 1. Подключение автоматического переключателя FILAX 2.

Важно! Для сети с частотой 50Гц извлеките перемычку, а при частоте 60Гц — установить ее как на рисунке 2.

АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВА

Рисунок 2. Изменение диапазона рабочей частоты FILAX 2.

Автоматика для генератора схема подключения – Схема подключения генератора к сети своими руками: через реверсивный переключатель, автоматическое переключение линии | Эксперт по ремонту

функции прибора, схема подключения бензогенератора к домашней сети

АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВАПрактически каждый попадал в ситуацию, когда по тем или иным причинам электросети отключали подачу электроэнергии. Перебои в энергоснабжении — это не только мелкие неудобства, но и зачастую серьезные проблемы. Порча продуктов в холодильнике и электродуховке, прерванный процесс стирки. Ну и стоит добавить ко всему этому возможный выход из строя электроприборов, которые начав определенную операцию, не могут остановить ее до окончания процесса.

Наиболее страдают от отключения электроэнергии районы с не особо развитым электрохозяйством — сельские и загородные дома, частные дачи и пр. Но избежать всех вышеперечисленных неприятностей совсем несложно, хотя и потребуются определенные расходы. Для этого достаточно обзавестись резервным мотогенератором. Подключение генератора к домашней сети

Схема и оборудование для подключения должны отвечать следующим требованиям:

  • Оперативность. При пропадании основного напряжения подключение резервного источника должно быть максимально простым и требовать минимум манипуляций, провести которые можно даже при свете спички.
  • Безопасность для человека. Все переключения должны быть безопасны для оператора — он не попадет в темноте под напряжение, не повредит руку каким-нибудь рубильником, не упадет со стремянки и пр.
  • Безопасность для оборудования. Схема должна иметь надежную защиту от нештатных ситуаций, таких как, к примеру, подача встречного напряжения при внезапном появлении основного питания, пропадание «нуля» или заземления на подстанции и пр. Все это может привести к серьезным авариям как в доме, так и на подстанции.

Ручное подключение

Для того чтобы запитать потребитель от генератора, нужно произвести следующие действия:

  1. Отключить домовую сеть от основного источника.
  2. Запустить резервный генератор и дождаться выхода его на рабочий режим.
  3. Подключить домовую сеть к резервному источнику. Именно в такой последовательности. Единственно, первым пунктом в списке можно поставить предварительный пуск резервного генератора, но отключение основной сети и подключение резервной — именно в указанной выше последовательности. Они не должны пересекаться ни при каких обстоятельствах. В противном случае вы рискуете включить источники питания встречно и последствия такого «недоразумения» могут оказаться весьма плачевными.

Специально для исключения подобных ситуаций созданы так называемые перекидные рубильники или переключатели. Взглянем на нижеприведенную схему:

Схема подключения бензогенератора к домашней сети в качестве резервного

Схема подключения бензогенератора к домашней сети в качестве резервного источника

Буквами, А и В здесь обозначены два перекидных переключателя, управляемых одной рукояткой. Переключая такой рубильник, вы сперва отключаете потребителя от основного источника и лишь затем подключаете его к резервному. В любом положении такого устройства основной и резервный источники не смогут быть подключены параллельно. Изображенный на схеме переключатель имеет два положения и контролирует два полюса (ноль и фазу), но существуют и многополюсные приборы: Трехполюсный перекидной рубильник открытого типа

Трехполюсный перекидной рубильник открытого типа

Преимуществом такого рубильника можно назвать визуальный контроль его состояния, недостатком — наличие оголенных токопроводящих цепей, которых при плохом освещении можно коснуться.

Есть переключатели, имеющие и три положения: основное питание / резервное питание / цепь разомкнута. В среднем положении такого прибора потребитель не подключен ни к одному источнику.

Если в вашем распоряжении не окажется перекидного выключателя, то его несложно собрать самому. Для этого достаточно взять два обычных «автомата» и собрать по схеме, предложенной ниже:

Использование автоматов в качестве перекидного переключателя

Обратите внимание: при использовании такой конструкции обязательно вставьте фиксирующую планку в специально предусмотренные отверстия каждого из выключателей (отмечена оранжевой полосой). Эта планка не даст переключать каждый прибор отдельно и не допустит встречного включения источников тока.

Автоматическое подключение генератора

Самая простая схема автоматического подключения потребителя к генератору при пропадании основного напряжения не вызывает проблем и реализуется, что говорится, в 5 секунд. Для этого достаточно взять любой соответствующий по мощности и напряжению пускатель с нужным количеством групп переключающих контактов. К примеру, трехполюсное реле РЭК77/3:

РЭК77/3 реле

При соответствующем включении такое реле будет самостоятельно следить за сетевым напряжением, и при его пропадании переключать потребитель на резервный источник:

Автоматическое переключение на генератор

Пока в линии «Сеть» есть напряжение, реле находится во включенном состоянии и нагрузка подключена к этой линии. Как только сетевое напряжение пропадет, реле отпустит (на схеме изображено именно такое положение пускателя) и своими нормально замкнутыми контактами подключит нагрузку к линии «Генератор», предварительно отключив ее от основного источника. Когда сетевое напряжение вновь появится, автомат сработает и восстановит питание нагрузки от сети. Тут вроде проблем нет, но как быть с автозапуском генератора? Если его нужно запускать вручную, какой смысл городить огород с автоматическим переключением нагрузки?

Автоматический запуск генератора

Если в конструкции бензогенератора предусмотрена возможность дистанционного пуска, скажем, кнопкой, то вопрос автопуска можно решить минимальными затратами сил и средств. Взгляните на схему ниже:

Схема переключения на генератор с автопуском

Простая схема подключения генератора к сети дома с использованием автозапуска

Левая ее часть аналогична предыдущей. Пока в сети есть напряжение, нагрузка подключена к ней. При пропадании сети трехполюсное реле переключает нагрузку на питание от генератора и третьим своим полюсом подает напряжение 12 В с пускового аккумулятора на цепи стартера электрогенератора и на реле времени, которое начинает периодически «нажимать» кнопку запуска бензогенератора. Как только он запустится, появившееся в сети «Генератор» напряжение заставит реле К2 сработать и отключить схему пуска.

Несмотря на исключительную простоту такой схемы, она имеет и множество недостатков. Прежде всего, нагрузка переключается на питание от генератора до его пуска — немедленно после пропадания сети. Это значит, что некоторое время, пока генератор не запустится и не выйдет на рабочий режим, на нагрузку будет подаваться неизвестно какое напряжение неизвестной частоты. Это грозит серьезными проблемами очень многим типам оборудования, к примеру, электродвигателям или трансформаторам.

Ну и если генератор не запустится, таймер будет «толкать» его до тех пор, пока полностью не разрядит аккумулятор, лишая вас возможности запустить двигатель хотя бы вручную. Всего этого, конечно, можно избежать, но схема автоматического пуска и переключения на резервное питание серьезно усложнится, и собрать ее сможет только профессионал, знающий как электрику, так и электронику.

Кто не хочет или не может «заморачиваться», а просто желает получить надежный автоматический альтернативный источник питания у себя дома или на даче, необходимо установить модуль АВР — Автоматического Ввода Резерва.

АВР для генератора

Этот прибор может идти как в комплекте с самим генератором, так и докупаться отдельно к уже существующему. Единственное условие — бензогенератор должен предусматривать такую доработку (иметь электрический стартер, дроссельную/воздушную заслонку с электроприводом и пр.).

Функции АВР:

  1. Отключение нагрузки от основной сети при снижении в ней напряжения.
  2. Самостоятельный пуск генератора.
  3. Вывод генератора на рабочий режим.
  4. Переключение нагрузки на питание от генератора.
  5. Постоянный контроль и автоматическая регулировка режима работы генератора — частоты, напряжения, оборотов и пр. (регулятор может быть опцией, т. к. некоторые генераторы им уже оснащены).
  6. Переключение нагрузки на основной источник (сеть) при возобновлении подачи с него напряжения.
  7. Остановка электрогенератора.
  8. Подзарядка стартерного аккумулятора.

Работу АВР проделывает основательную, и собрать его, обладая даже хорошими знаниями электротехники, не так-то просто. Обычно для построения таких агрегатов используются avr — контроллеры, реже — полноценные микропроцессоры и даже компьютерные системы, требующие от мастера глубоких знаний не только электротехники и электроники, но и программирования. Именно из-за сложности повторения полноценных АВР тема самостоятельного изготовления их в данной статье рассматриваться не будет.

АВР позволяет полностью автоматизировать процесс переключения нагрузки

Структурная схема как подключить генератор к сети дома с использованием АВР

Ну, а тем, кто все же решил оборудовать свой дом резервным генератором с АВР, можно рекомендовать покупку такого блока (если генератор уже есть) или приобретение мотогенератора с таким блоком.

основные способы и схемы подключения

Автор: Алексей Пархоменко

эксперт категории «Ручной и электроинструмент»

Генератор – это продуманное и надежное приспособление, обладающее уникальной способностью – перерабатывать бензиновое топливо (также газ или солярку) в электричество. Эта возможность приходится как нельзя кстати в современном доме, напичканном электрическими приборами.

Без их полноценного функционирования мы уже не представляем даже несколько часов своей жизни. Не менее важна она и на предприятиях, где промедление в работе электрооборудования оборачивается большими денежными тратами.

Сегодня в домах большой популярностью пользуются генераторы с автоматическим подключением. Благодаря своей практичности и высокому комфорту при использовании, они становятся все более востребованными среди владельцев частных домов.

Посудите сами: вы находитесь далеко от своего дома, электричество в сети пропадает, а ваш генератор самостоятельно включает резерв. И никаких потекших холодильников, и выключенного топления.

Тип запуска

Современные генераторы – большой класс агрегатов, отличающихся набором технических характеристик, видом топлива, на котором они работают и разными функциями. Также одним из важных элементов, определяющих удобство работы с агрегатом, является тип запуска. На сегодня существует несколько типов запуска генераторов, которые я подробно опишу ниже.

  1. Ручной тип запуска. Выполняется путем продергивания пускового троса. То есть, вы самостоятельно приводите в работу устройство при возникновении неисправностей в центральной электрической сети. Этот запуск хорош тем, что всегда готов к работе, но удобный он только для небольших генов. Чем тяжелее и мощнее аппарат, тем больше силы нужно приложить, чтобы продернуть зажигание, поскольку возникает сопротивление при запуске. Помимо того, на холоде и морозе, с первого раза

типовые схемы подключения на 2 и 3 ввода, на контакторах

Когда электричество исчезает даже на несколько минут, предприятия могут понести колоссальные убытки. А для больниц такая ситуация просто опасна. В большинстве объектах необходимо обеспечивать бесперебойное электроснабжение. Для этого его следует подключить к нескольким источникам электроэнергии. Специалисты при таком подходе используют АВР.

Типовые схемы подключения АВР - определение, принцип работы

Типовые схемы подключения АВР - определение, принцип работы

Что такое АВР и его назначение

Автоматический ввод резерва или АВР – это система, относящаяся к электрощитовым вводно-коммутационным распределительным устройствам. Основной целью АВР является быстрое подключение нагрузки на резервное оборудование. Такое подключение необходимо, когда появляются проблемы с подачей электричества от главного источника электроэнергии. Система следит за напряжением и током нагрузки и таким образом обеспечивает автоматическое переключение на функционирование в аварийном режиме.

АВР необходимо, если имеется запасной источник питания (дополнительная линия или еще один трансформатор). Если при аварийной ситуации будет отключен первый источник, вся работа перейдет на запасной. Использование АВР позволит избежать неприятностей, вызванных перебоями подачи электроэнергии.

Требования к АВР

Основные требования к системам АВР заключаются в следующем:

  • Она должна иметь высокую скорость восстановления подачи электроэнергии.
  • В случае, когда основная линия перестает работать, установка должна обеспечить подачу электроэнергии потребителю от запасного источника.
  • Действие осуществляется один раз. Нельзя допускать несколько включений и отключений нагрузки, например, из-за короткого замыкания.
  • Выключатель основного питания должен включаться с помощью автоматики системы автоматического ввода резерва. До тех пор, пока не будет подано запасное электропитание.
  • Система АВР должна производить контроль корректного функционирования цепи управления резервным оборудованием.

Принцип работы автоматического ввода резерва

Основой работы АВР является контроль напряжения в цепи. Контроль может осуществляться как при помощи любых реле, так и при помощи микропроцессорных блоков управления.

Справка! Реле контроля напряжения (также называют вольт контроллер) отслеживает состояние электрического потенциала. В случае перенапряжения в сети вольт контроллер мгновенно обесточит сеть.

Контактная группа, контролирующая наличие электроэнергии, играет основную роль в системе АВР. В нашем случае это реле. Когда напряжение пропадает, управляющий механизм получает сигнал и переключается на питание генератора. Когда основная сеть начинает работать штатно, этот же механизм переключает питание обратно.

Основные варианты логики функционирования АВР

Система АВР с приоритетом первого ввода

Суть работы системы АВР этого типа заключается в том, что нагрузка изначально подключается к источнику электроэнергии № 1. Когда случается перегрузка, короткое замыкание, обрыв фазы или другая аварийная ситуация, нагрузка переходит на запасной источник. Когда подача электричества на первом восстановлена до нормальных параметров, нагрузка автоматически переключается обратно.

Система АВР с приоритетом второго ввода

Логика работы та же, что и у предыдущего типа системы. Разница в том, что нагрузку подключают к вводу 2. В случае аварии напряжение переходит на ввод 1. После того, как напряжение на втором источнике будет восстановлено, напряжение автоматом переключится на него.

Система АВР с ручным выбором приоритета

Схема системы АВР с ручным выбором приоритета является более сложной, чем рассмотренные выше. В этом случае на системе АВР будет установлен переключатель, с помощью которого можно регулировать выбор приоритета АВР.

Система АВР без приоритета

Эта АВР функционирует от любого источника питания. В случае, когда напряжение идет на ввод 1, а на нём происходит аварийная ситуация, нагрузка переходит на ввод 2. После стабилизации работы первого ввода механизм продолжает работать на вводе 2. Когда произойдет авария на втором, напряжение автоматом переключится на первый.

Основные типы шкафов и щитов АВР

Щит АВР на два ввода на контакторах (пускателях)

Установка шкафа АВР на пускателях – это самый простой способ создать резервное питание. Этот шкаф – наиболее бюджетный вариант установки АВР. Как правило, в шкафах АВР на 2 ввода используют автоматические выключатели. Они нужны для того, чтобы защитить систему от перегрузок и замыканий. Защиту от перекоса фаз и скачков напряжения осуществляет реле напряжения. Кроме этого, реле становятся «мозгом» всей системы автоматического ввода резерва.

Шкаф АВР с двумя контакторами работает по следующему принципу. Два контактора подключены к первому и второму источнику соответственно. Первый контактор замкнут, а у второго цепь разомкнута. Электричество идет через ввод № 1.

Внимание! В случае, когда у АВР логика приоритета второго ввода, ситуация будет обратной: цепь второго контактора замкнута, а первого – разомкнута.

Если подача тока на первом вводе пропадет, а на втором будет нормальной, то контакты второго пускателя замкнутся, и механизм переключится на него. Как только на первом вводе напряжение восстановится – схема перейдет в первоначальное состояние.

При помощи реле здесь можно отрегулировать время задержки, с которой будет осуществляться переключение с одного источника на другой. Оптимальная задержка – от 5 до 10 секунд, она позволит обезопасить систему от ложного срабатывания АВР. Ложное срабатывание может произойти, например, в случае просадки напряжения.

Справка! Для того чтобы оба контактора не могли включиться одновременно, в щитах АВР используют дополнительные механические блокировки.

Щит АВР на 2 ввода на автоматах с моторным приводом

Они лучше всего подходят для использования при номинальных токах 250-6300А. Когда ток на основном вводе пропадает, специальные электромоторы получают сигнал и взводят пружины запасного выключателя, переключая нагрузку на другой ввод.

Основные плюсы шкафов АВР на моторе:

  • Ресурс по перезагрузкам намного больше, чем у АВР с пускателями;
  • Подключить шины к такому автомату проще;
  • Щит АВР на автоматах может работать также и в ручном режиме. В таком случае включить или отключить автомат можно с помощью специальных кнопок.

Суть функционирования этого щита заключается в следующем. Если на основном вводе случилась авария, автоматика проверяет, готов ли ввод 2 для подачи тока. Если все в порядке, то пружина автомата второго ввода взводится, и подается электроэнергия. Когда ввод № 1 снова может работать в штатном режиме, весь процесс идет в обратном порядке, подавая электроэнергию на основной ввод.

На щитах с моторным приводом, как правило, устанавливается лицевая панель, на которой можно отслеживать все изменения в АВР. А для предотвращения одновременного срабатывания двух автоматических выключателей нередко используют электрические блокировки.

Щит АВР на 3 ввода

Эти шкафы являются одними из самых надежных источников питания. Все потому, что в АВР на 3 ввода есть две запасных линии, что обеспечивает максимально низкую возможность отключения питания на объекте. Обычно такие шкафы АВР используют при взаимодействии с потребителями первой категории надежности электроснабжения. К ним относятся такие объекты, обесточивание которых влечет за собой угрозу для жизни людей или безопасности государства, а также может причинить большой материальный ущерб.

Щиты АВР на 3 ввода работают по двум наиболее распространенным схемам.

Первая – это когда одна секция потребителей питается от трех независимых линий. Тогда можно установить приоритет для одного из вводов, а можно работать без приоритета. Нагрузка будет подключена туда, где нормализовано напряжение.

Вторая схема функционирования щита АВР на 3 ввода состоит в том, что две секции потребителей работают от двух линий, которые независимы друг от друга. Третий ввод подключается к запасному источнику питания. В случае аварийной ситуации он подключается к одной из секций.

Справка! Подобные щиты могут быть оснащены и механической блокировкой, и автоматами с электроприводами.

Вводно-распределительное устройство с АВР

Устройство используется для приема и учета электричества, а также для защиты зданий от короткого замыкания или перегрузки. Шкафы ВРУ с АВР используют в сетях переменного тока с напряжением 380/220В с частотой 50Гц.

Шкафы ВРУ с автоматическим вводом резерва представляют собой отдельную панель, где функционирует как автоматическое, так и ручное переключение, а также происходит учет электроэнергии, которая потребляется на каждой линии.

Шкафы ВРУ состоят из:

  • Блока введения и вывода кабеля.
  • Блока автоматического ввода резерва.
  • Блока, где происходит учет потребляемого электричества.

Также они могут быть многопанельными. Тогда дополнительно в них будут установлены противопожарные панели, распределительные панели и другие, в зависимости от требований к электроустановке.

Щит АВР для запуска генератора

Дополнительное питание от генератора электроэнергии позволяет почти полностью избежать полного обесточивания. Это один из самых надежных способов создать бесперебойную подачу электричества. Шкаф АВР в этом случае необходим, чтобы обеспечить автоматическое функционирование генератора по заданному алгоритму.

Шкаф АВР для генератора может работать и в автоматическом, и в ручном режиме. Изначально в нём установлен автоматический режим, но вы можете его легко изменить.

Важно! Для корректной работы связки АВР-генератор последний должен иметь возможность запускаться автоматически.

Когда на вводе 1 прекращается подача электричества, система АВР отправит сигнал для запуска генератора. После того, как генератор начнет нормально функционировать, и напряжение на втором вводе достигнет нужного уровня, механизм переключится на резервный источник. Благодаря установленному реле времени второй ввод не будет подключен к генератору, пока он не начнет работать в штатном режиме. Как только на основном (первом) источнике будет восстановлена подача электроэнергии, генератор будет отключен, а питание переключится на ввод 1.

В ручном режиме работы включение и отключение генератора происходит за счет нажатия специальных кнопок.

БУАВР

Блок управления автоматического включения резерва работает в составе устройств АВР и осуществляет переключение с одного источника на другой. Также он контролирует состояние линий, управляет контакторами и магнитными пускателями, моторами и запускает электрогенератор.

БУАВР в течение определенного периода измеряет напряжение в фазах и обрабатывает результаты в реальном времени. Благодаря этому он может определять среднее значение напряжения в каждой фазе. БУАВР имеет повышенную устойчивость к перенапряжению.

АВР Zelio Logic

Система автоматического ввода резерва с релейной логикой переключения между источниками. Используется программируемое реле Zelio Logic. Одним из основных преимуществ выбора такого реле является европейское качество при относительно низкой стоимости. Также реле Zelio Logic отличается довольно простым программированием. Для корректного использования достаточно базовых знаний. Также реле имеет графический интерфейс, что серьезно упрощает взаимодействие.

АВР ATS

АВР ATS – это шкафы АВР с интеллектуальными микропроцессорными блоками. На данный момент такой вариант шкафа АВР является самым дорогостоящим на рынке. Наиболее востребованы они на промышленных предприятиях, где важно обеспечить надежную бесперебойную работу сети и максимально быстрое переключение на альтернативный источник питания. Некоторые АВР ATS переключаются с одного ввода на другой буквально за две секунды. Также таким блокам не нужно дополнительное питание. Они работают при 480В. Можно выбрать наиболее удобный алгоритм, а также автоматический или ручной режим.

Схема подключения бензиновых генераторов с блоком АВР

Техника компании СКАТ успешно решает проблему бесперебойного аварийного энергообеспечения. Для этого существует блок АВР (автоматического ввода резерва): через него генератор можно подключить к электрощитку, и в случае отключения электричества в центральной сети, блок сам подаст команду на включение генератора. После возвращения централизованного электричества блок остановит генератор, и он перейдет в режим ожидания. Все это происходит без участия человека. Увидеть подробности можно в ролике «Генератор с автозапуском».

Генераторы с автоматическим вводом резерва необходимы в загородном доме, а также в придорожных кафе, мотелях, на АЗС – там где электричество нестабильно.

Обычно блоки АВР приобретают отдельно и подключают к генераторам через специальное гнездо. Но есть модели, в которых блок уже встроен. Отличить их можно по обозначению «АВТО» в маркировке: УГБ-5000Е/АВТО, УГБ-6000Е/АВТО, УГБ-6700Е/АВТО, УГБ-7500Е/АВТО, УГБ-8200Е/АВТО.

Чтобы система работала стабильно, необходимо соблюсти некоторые условия. Главное из них – грамотное подключение. Нужно выбрать только необходимые потребители: насосы системы отопления, холодильник, сигнализацию, минимальное освещение. Доверьте подключение генератора по этой схеме опытному электрику.

Электроприборы, которые подключаем к резервному питанию, выделены в отдельную цепь. Подключить их лучше через розетку на 32А – с нее можно снять всю мощность.

Остальные электроприборы остаются подключенными к городской сети.

Фаза монтируется через автоматический предохранитель.

Внимание! Обязательно подключите заземление!

Генератор автоматически запустится при температуре от +40 ºC до -10 ºС. Поэтому устройство обычно устанавливают в подвале или гараже.

Чтобы генератор не подвел в самый ответственный момент, необходимо периодически проверять его боеготовность.

  • Не реже одного раза в месяц запускайте генераторную установку на 15-20 минут с выключенной автоматикой.
  • Не реже одного раза в две недели или через 50 часов работы, проверяйте уровень и состояние моторного масла и топлива.
  • Каждые два месяца меняйте топливо на свежее.
  • В режиме ожидания аккумулятор не заряжается, поэтому проверяйте его заряд раз в две недели.

Генераторы с автоматическим вводом резерва – отличная возможность застраховать себя от аварийного отключения электричества. Вы можете спокойно оставить загородный дом, зная, что он под защитой, а ваш бизнес продолжит работу, пока все остальные будут сидеть без света.

Схема АВР 380В с ДГУ

В данной статье, речь пойдет о схеме АВР на напряжение 380 В от трех независимых источников питания, в качестве третьего источника питания предусматривается дизель генераторная установка (ДГУ).

Питание потребителей от трех независимых источников питания предусматривается для потребителей 1-й категории особой группы, когда необходима бесперебойная работа для безаварийного останова производства с целью предотвращения угрозы жизни людей, взрывов и пожаров в соответствии с ПУЭ 7-издание пункт 1.2.18.

Особенностью данной схемы является то, что при отключенных обоих вводах, в случае аварии или вручную были отключены вводы, например для проверки (ремонта) электрооборудования, производится автоматический запуск ДГУ и подключение к нему нагрузки. При восстановлении напряжения на любом из вводов, происходит автоматическое переключение в исходное состояние. На рис.1 представлена схема АВР с ДГУ выполненная на контакторах в однолинейном изображении.

Рис.1 – Схема АВР с ДГУ на контакторах в однолинейном изображении

Рис.1 – Схема АВР с ДГУ на контакторах в однолинейном изображении

Принцип работы АВР

В нормальном режиме, питание потребителей напряжением 380В осуществляется от Ввода 1 или Ввода 2 через общий силовой контактор КМ3, который включается через определенную выдержку времени с помощью реле времени КТ1, делается это для того, чтобы питание осуществлялось при наступлении устойчивого режима работы.

Наличие напряжения на каждом из вводом контролируется реле контроля напряжения KV1 и KV2. Переключатель SA1 служит для выбора приоритетного ввода. При наличии напряжения на обоих вводах, первым подключится тот ввод у которого выбран приоритет (положение «1» – первый ввод, положение «0» – оба ввода отключены, положение «2» – второй ввод).

Рис.2 – Схема электрическая принципиальная АВР с ДГУ на контакторах

Рис.2 – Схема электрическая принципиальная АВР с ДГУ на контакторах

Принцип работы АВР с основными вводами (Ввод 1 и Ввод 2)

Например при исчезновении напряжения на Вводе 1, срабатывает реле контроля напряжения KV1 и размыкает своими контактами, цепь питания контактора КМ1. При наличии напряжения на Вводе 2, контакты реле KV2 замкнуты и если контактор КМ1 находится в отключенном состоянии, то сработает контактор КМ2, при этом контактор КМ3 находится во включенном состоянии и напряжение потребителям подается через замкнутые силовые контакты контакторов КМ1 и КМ3.

Аналогично выполняется АВР для Ввода 2.

Принцип работы АВР с ДГУ

При пропадании напряжения на основных вводах: Ввод 1 и Ввод 2, происходит замыкание цепи управления генератором, размыкание цепи питания силового контактора КМ3. После того, как генератор запустится и реле контроля напряжения KV3 замкнет свой выходной контакт, начинается отсчет времени с помощью реле времени с задержкой на включение KT2, необходимый для стабилизации выходных параметров генератора. По окончании отсчета, цепь питания контактора КМ4 замыкается и подключается питание генератора.

При восстановлении напряжения на каком либо из основных вводов. Например восстановилось напряжение на Вводе 1, в этом случае срабатывает реле контроля напряжения KV1 и своими контактами замыкает цепь питания контактора КМ1. При этом выходные контакты контактора КМ1 замыкаются и подается питание на реле времени с задержкой на включение KT1.

После окончания отсчета времени, реле времени КТ1 замыкает цепь питания промежуточное реле KL3, которое в свою очередь замыкает цепь питания катушки контактора КМ3 и размыкает цепь питания контактора КМ4, после того как контактор КМ4 отключится, сработает КМ3 и через замкнутые силовые контакты контакторов КМ1 и КМ3 подается напряжение потребителям от основного Ввода 1.

Также рекомендую вам ознакомится со схемой АВР на три ввода с секционным контактором.

Поделиться в социальных сетях

Как подключить генератор к блоку автозапуска…

Как подключить генератор к блоку автоматики (АВР).

В этом небольшой статье попробуем разобраться с тем, как подключить генератор как блоку автоматики. Приобретая бензиновый, дизельный или газовый генератор для дома, офиса или производства, многие хотят, чтоб в случае пропадания электричества в основной сети генератор запускался в автоматическом режиме.

Для наглядности,в качестве примера, рассмотрим как это делается на бензиновом генераторе ETERNUS-HONDA BH7000DXE на котором установлен хондовский двигатель GX390.

Для того, чтоб блок автоматики (АВР) мог управлять генератором, нам необходимо немного переделать генератор, а именно продублировать замок зажигания генератора. Большинство бензиновых генераторов до 5-6 кВт, которые чаще всего используют в качестве резервного источника электричества для дома, небольшого офиса, устроены примерно одинаково.

Итак, для того чтоб блок управления генератором мог корректно управлять запуском и остановкой генератора, нужно немного знать как устроен сам генератор и за счет чего происходит запуск и остановка двигателя бензинового генератора.

Для запуска двигателя бензинового генератора, нам необходимо подать питание на втягивающее устройство стартера, то есть, продублировать поворот ключа зажигания в положение «СТАРТ». То же самое, то есть подают сигнал на втягивающее реле делает и автоматика. Обратите внимание, что контакты большинства реле применяемых в блоках АВР рассчитаны на ток 5-10 А. Перед подключением генератора к блоку автоматического управления генератором (АВР) убедитесь, что реле не выйдет из строя по причине превышения допустимого тока.

Не особо вдаваясь в технические хитрости устройства бензинового двигателя генератора напряжения , отметим лишь, что все бензиновые двигатели имеют катушку зажигания, которая выдает напряжение порядка 10-15 тыс. Вольт. Так вот, остановка двигателя происходит посредством того, что контакты ключа зажигания замыкают одну из обмоток катушки на корпус генератора.

Большинство генераторов до 5-7 кВт оснащены датчиком уровня масла, назначение которого осуществить экстренную остановку двигателя генератора при понижении масла ниже нормы. Датчик устроен достаточно просто и состоит и поплавка и подвижного контакта. В случае понижения масла в двигателе генератора ниже нормы, контакт замыкается на корпус, тем самым замыкая катушку зажигания и останавливая двигатель.

Для предотвращения искрения между контактом датчика масла и корпусом, используют специальное промежуточное реле. Если внимательно посмотрите на блок двигателя генератора увидите, что из двигателя выходит провод, чаще всего желтого цвета, который подсоединен к реле, которое нам собственно и понадобиться.

Итак, вводная теоритическая часть закончена, приступаем к практической части.

В предыдущих статьях мы уже рассматривали как управлять воздушной заслонкой генератора , сейчас же расскажем куда и что подключать чтоб генератор запускался и останавливался.

Итак, что нам необходимо. На фото. видно, что для подключения к существующим разъемам мы применяем стандартные разъемы, используемые в автомобилях.

Переключатель автоматический – Автоматический переключатель между основной и резервной линиями

Автоматический переключатель между основной и резервной линиями

Результат: можно брать
Под катом несколько фотографий суммарным объемом примерно 4-5 мегабайт

Хотел написать очередной увлекательнейший обзор про пауэрбанк, или про зарядку B6, или про пистон от сяоми, но это в будущем. Пока почитайте скучный обзор про штуку с моторчиком — Карлсона автоматический переключатель

Вещь хоть и нужная, но достаточно редко применимая в обычной жизни, поэтому буду стараться придерживаться основного принципа: «краткость — с. т.»

Итак.
На случай отключения электричества в загородном доме есть бензиновый генератор. В щитке стоит специальный рубильник, который подключает дом либо к электричеству со столбов, либо к электричеству от генератора. Раньше пользовался реверсивным рубильником от известной фирмы ABB, но это штука тугая в переключении и достаточно дорогая (на текущий момент рубильник на ток 63А стоит $100-120).
АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВА

Чуть меньше года назад дом на 2/3 сгорел, поэтому сейчас отстроились заново, и опять приходится решать вопрос переключения между основной линией и генератором. Решил сэкономить и купить за копейки подобное устройство у китайцев
upd. Отдельно поясню — дом сгорел из-за прогоревшей трубы в бане, а не из-за электрики. А слова насчет копеек следует интерпретировать так, что 120$ за простейший ручной переключатель, в котором нет даже захудалого резистора, так это, на мой взгляд, перебор. Цена ему $15 в базарный день, на что и был расчёт

В процессе поиска наткнулся на автоматический переключатель за $16.56, и после недельных раздумий было решено попробовать сыграть в китайскую рулетку, т. к. обзоров на данную штуку или какой-то другой информации не нашлось, да я особо и не искал

Бесплатной доставки не было, самая дешевая платная была через SPSR, обошлась в $17.25. Жаба, конечно, протестовала, но суммарные $33.81 все равно меньше маячащих на горизонте $100, поэтому проявил силу воли и нажал кнопку «Buy from this seller»

В итоге неделя ожидания перед отправкой, потом ещё 12 дней путешествий по континенту, и в итоге заветная коробочка лежит в постамате в 3 минутах езды от дома. Для тех, кто ещё не сталкивался, постамат (почтамат) — такая штука из множества ячеек для быстрого получения почтового отправления. Вводишь секретный код из СМС в терминал, открывается ячейка с твоим товаром, забираешь и радуешься
АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВА

Упаковано стандартно: немного пупырчатой плёнки, картонная коробка, внутри в полиэтиленовом пакете сам переключатель
АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВА

То, что за доставку берут деньги, совершенно не означает, что к ней будут относиться хоть сколько-нибудь бережнее. Мою, судя по всему, уронили. Металл толщиной около 1 мм загнулся, хорошо хоть не пластиком вниз уронили, он бы наверняка раскололся
АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВА

Первое, что бросается в глаза — достаточно большой вес и габариты. Высота 12 см., ширина 15 см., глубина 13 см. Вес около полутора килограмм. Таким образом, в ширину этот модуль будет занимать место аж в 7.5 DIN. Впрочем, это не сильно больше, чем у ABB

В комплекте два болта для крепления ручки и две наклейки на оную. Зачем? Видимо, не жалко. Плюс стандартная «попрошайка» о «five-star positie feedback» (в итоге поставил 4 звезды, но об этом ниже)
АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВА

Второе — корпус с большими зазорами. Сам пластик обычный, не пахнет, достаточно толстый. Но вот крепится к металлическому основанию на слабенькие клипсы, из-за чего зазоры между крышкой и основанием достигают 1 мм.
АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВА

Стоит лишь сжать две половинки, и зазоры исчезают
АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВА

Вид снизу
АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВА

Ну да ладно, зазоры — это не страшно. В конце концов оно будет стоять в щитке, куда заглядывать особенно незачем. Снимем «одежду» в ожидании технопорно
АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВА

Ну-у-у, не порно, конечно, но техно. Простейшее устройство — два пакетника, два концевика и реверсивный моторчик. Спорная конструкция, на мой взгляд, но вспоминая про 16.5$, понимаю, что это придирка
АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВА

На лицевой стороне прибора 4 светодиода. Светодиод светится, если на соответствующих контактах рядом есть напряжение. Таким образом можно контролировать состояние основной и резервной линий. Также эти светодиоды можно продублировать на лицевую сторону щитка, подключив лампы-индикаторы к зелёному разъему
АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВА

Всё выглядит достаточно аккуратно, внутренний перфекционист особенно не возмущается
АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВА

А вот пайка слегка подкачала. Дядюшка Ляо мелко саботировал свою однообразную работу по припаиванию светодиодов
АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВА

Один светодиод плохо пропаян, припой отвалился, нога болтается, но на фото не очень хорошо видно

АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВА

Второй светодиод печалит больше: у него забыли откусить выводы и понавешали знатных соплей припоем
АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВА

Ладно, паяльник и кусачки под рукой, устраняется за полминуты. Осматриваем остальную электронику, вроде, без косяков
АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВА
АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВА

Можно подключать к электричеству.
Переключатель работает. Причем достаточно быстро (время переключения в районе 1 секунды) и тихо, от такого мотора ожидал больше шума. Если красным выключателем перевести в ручной режим переключения, ручка поворачивается достаточно тяжело, но легче, чем в упомянутом выше рубильнике от ABB

Подводя итог: вполне себе нормальное устройство, думаю, проблем с ним не будет в эксплуатации, ломаться там нечему. Рекомендую, но с визуальным осмотром перед вводом в эксплуатацию. В преддверии 11.11 продаван поднял цену на полтора бакса, зато участвует в акции с ценой $16.50
upd. В комментариях рекомендуют поменять китайские автоматы на российские аналоги, чтобы исключить потенциально слабое звено, кто знает, как они внутри устроены (я потом поменяю и добавлю в обзор разобранный автомат)

Один нюанс забыл упомянуть. Он очевидный, но всё же. Эта штука только переключает линии, но не включает генератор. Поэтому когда отключат электричество, достаточно будет сходить и запустить генератор (он запускается с кнопки). Как только на резервной линии появится напряжение, автоматический переключатель переведёт дом на питание от генератора. Если в это время появится электричество, переключатель переведёт дом обратно на него, генератор нужно будет пойти и выключить

Автоматизация этой части хоть и возможна, но не актуальна, так как отключение электричества связаны в основном только с авариями в горсети, которые довольно редки и устраняются достаточно оперативно

Спасибо за внимание. Задавайте вопросы, критикуйте, хвалите. Первопост всё-таки

upd.
Выложил видео, спасибо madeweb!
На видео слышны посторонние звуки — жена рукодельничает, на машинке шьет. Не пугайтесь

upd2.
Здесь хоть и стоят автоматические выключатели (D63A), но при перегрузке по току отработать им не даст поворотный кулак. При включении автомата кулак подпирает его снизу, а так как сам мотор очень тугой, отщёлкивания не произойдёт, автомат останется во включенном состоянии. Имейте это в виду.

upd3.
Меня поправили, что автоматический выключатель должен отработать даже при зажатом рычаге, поэтому если автомат не кривой, дополнение upd2 не имеет значения

Автоматический переключатель фаз — назначение, выбор и подключение

Автоматический переключатель фаз

В ряде случаев промышленные, а иногда и бытовые однофазные линии запитываются от сети с тремя-четырьмя фазами. Для того чтобы выбрать фазу с напряжением, соответствующим параметрам линии, в цепь устанавливается автоматический переключатель фаз. Это устройство обеспечивает бесперебойную подачу напряжения, а также защищает подключенные приборы от перепадов, которые могут стать причиной выхода техники из строя. Переключатель фаз автоматический подсоединяется к трёхфазной или четырехфазной сети, через которую происходит подача электричества в однофазную линию. Один из фазных проводников на его выходе подключается к защищаемой цепи. При выходе параметров напряжения на нем за пределы нормы прибор переключает электросеть на питание от другого кабеля.

Порядок работы переключателя

Автоматический переключатель – это цифровой прибор, изготовленный на базе микропроцессоров. Устройство долговечно и отличается высокой точностью, позволяющей обеспечить надежную защиту включенной в сеть аппаратуры.

При подсоединении аппарата к линии может быть выбрана в качестве питающего проводника любая фазная жила.

Пример подключения переключателя фаз

Чтобы контакты встроенных в прибор выходных реле не залипали, устройство оснащено внутренней блокировкой. Кроме того, оно контролирует состояние контактов пускателей, которые имеются во внешней электроцепи. Использование этого прибора позволяет не допустить перегрузки по фазам.

Параметры установки АПФ

Для моделей этих устройств характерны нижеперечисленные установочные параметры:

  • Предельное напряжение (верхнее и нижнее). Показатель максимального напряжения наиболее значим, и важно правильно его подобрать, не ошибившись при настройке. Если он слишком низок, то прибор будет постоянно срабатывать, а если подобранное значение слишком велико – неизбежен перегрев внутренней проводки, что может привести к пожару.
  • Приоритетная фаза АПФ. Если перепады напряжения на ней отсутствуют, аппарат не будет переключаться на другие линии. При перепадах питание линии будет переключено на другой проводник, но вместе с тем аппарат продолжит контролировать приоритетную жилу. Когда разность потенциалов на ней нормализуется, нагрузка переключится обратно.
  • Время включения. Этим термином обозначается период задержки после исчезновения напряжения на всех токоведущих проводниках. По истечении его устройство вновь попытается включить питание.

Регуляторы на аналоговом и цифровом переключателе фаз

  • Время возврата. Это интервал после переключения питания с приоритетной жилы на резервную, по истечении которого прибор произведет проверку основной фазы, и если ее параметры будут в норме, переключит снабжение линии электроэнергией на нее. Если приоритетный проводник не готов к подключению нагрузки, повторная проверка будет произведена через тот же временной промежуток.

Особенности подключения и функционирования устройства

Монтаж автоматического переключателя производится сразу после электросчетчика. Аппарат, подсоединенный к линии, тестирует состояние проводников и подключает цепь к жиле, параметры которой максимально соответствуют требуемым. В ходе работы прибор постоянно следит за напряжением, которое не должно выходить за установленные пределы.

Порядок работы и устройство переключателя фаз на видео:

При работе контроль напряжения осуществляется не только на приоритетной фазе, но и на двух резервных. Это нужно для того, чтобы при нарушении параметров на основном проводнике без задержек выбрать другую жилу для переключения питания. Если напряжение на обеих резервных линиях находится в допустимых пределах, переключение идет от L1 к L2 и далее (обозначения фаз имеются на корпусе приборов, каждой соответствует свой светодиод).

Схема монтажа переключателя фаз

Если разность потенциалов не соответствует заданным параметрам ни на одном проводнике, питание подаваться через них не будет. При нормализации напряжения на приоритетной линии подключение произойдет к ней в первую очередь.

Основные виды АПФ

В современных сетях нашей страны наиболее распространены модели переключателей PF 431 и PF 451. Рассмотрим их более подробно.

PF 431

Этот прибор обеспечивает надежную защиту бытовой аппаратуры от скачков напряжения на фазных жилах. Он может устанавливаться вместе с кондиционерами, холодильниками и морозильными камерами, компьютерами, системами сигнализации и видеонаблюдения и другой аппаратурой, которая должна непрерывно снабжаться электроэнергией.

Устройство работает по следующему принципу. Ко входу АПФ подключается трехфазное напряжение, к выходу – однофазная сеть с параметрами 220В, 50Гц. Прибор осуществляет контроль выходной разности потенциалов, и если она выходит за установленные пределы, подключает линию к фазной жиле, параметры которой соответствуют норме. При этом контроль за приоритетным проводником, которым для этой модели является L3, не прекращается.

Переключатель фаз во вводном щитке

Когда напряжение на ней нормализуется, происходит обратное подключение. Если разность потенциалов на L3 стабильна, переподключения питания на резервные фазы происходить не будет.

PF 451

Это устройство предназначено для обеспечения стабильности питания однофазных линий. Оно используется с различной бытовой аппаратурой, как и PF 431, и работает по аналогичному принципу, который незачем описывать повторно. Основная разница между ними заключается в том, что у PF 451 приоритетная фаза отсутствует. Поэтому для подключения всегда выбирается линия с оптимальными показателями напряжения.

Принцип работы и монтаж электроцепи на основе переключателя фаз на видео:

Заключение

Переключатель фаз бывает не только автоматического, но и ручного типа. Однако электронное устройство более удобно в использовании, поскольку оно не требует контроля и вмешательства. Чтобы обеспечить надежную защиту бытовой аппаратуры, достаточно правильно настроить АПФ, и за сохранность техники можно будет не беспокоиться.

автоматический и ручной, область применения и особенности работы

На производственных предприятиях и иных учреждениях предъявляются строгие требования к бесперебойной работе электросети. Основные средства ее обеспечения – автоматический ввод резерва, используемый в однофазных электросетях, и переключатель фаз, отличающийся от классического АВР использованием добавочных линий с неактивной фазы трехфазной сети.

Устройство и принцип работы

АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВА

Автоматический переключатель фаз DigiTOP PS-63A

На входные зажимы устройства идет питание с трех фаз, а выходит из него только одна, имеющая максимально близкий к оптимальному показатель напряжения. При прекращении питания главной линии или резком скачке напряжения трехфазный переключатель задействует другую фазу – где показатель наиболее приближен к нормальному. По большей части прибор используют в сетях с тремя фазами, но также применяют и для генератора – в этом случае надлежит продумать форму запускающего импульса.

Выпускаются механические и автоматические устройства. Автоматический трехфазный переключатель фаз работает с опорой на микроконтроллер. Переключая конструкцию из нескольких реле, автоматический переключатель ищет среди электролиний наиболее приближенную к целесообразным показателям. Позиционные 3 фазные ручные переключатели выпускаются с разным числом позиций (от двух до четырех). Цифровой порядок переключения у них может быть разный. Один из примеров: 0-1-0-2-0-3: тут нуль обозначает выключение всех линий, а остальные цифры соответствуют фазам. Механические аппараты с большой мощностью часто применяются для реверсивных двигателей.

Как выбрать переключатель фаз

АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВА

Ручной и автоматический переключатель фаз

При выборе переключателя напряжения прежде всего нужно обращать внимание на параметры тока, на которые рассчитан прибор. Именно они определяют, подойдет ли прибор для использования в конкретной сети. Не рекомендуется приобретение переключателя, ток которого больше номинального показателя для входного автомата.

Другими значимыми параметрами при приобретении ручного или автоматического фазоискателя являются:

  • гибкость и вариативность настроек: как минимум, должны быть предусмотрены установка границ нормального напряжения и основной фазы;
  • тип индикации: предпочтительный – жидкокристаллический дисплей; в дешевых моделях используются светодиоды;
  • дополнительные возможности – например, сенсорное управление.

Если обнаружилось, что у распределителя фаз недостаточная мощность для обслуживания сети, можно поставить коммутационное устройство. При этом обмотка контактора или пускателя должна соединяться с выходными зажимами прибора.

Область применения, назначение и параметры

АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВА

Пример использования устройства

Сфера использования устройств выбора фаз обширна: приборы устанавливаются на производственных предприятиях – в системах автоматизации, управления, вентиляции и других; в больницах и аптеках – аппараты жизнеобеспечения, хранение медикаментов. Применяются они и в жилых домах: для обеспечения сигнализационных установок, газовых котлов.

Использование 3 фазного выключателя практикуется для перенесения питания с активной линии на другую. Такая опция целесообразна в ситуациях, если в основной линии возникают перебои, резкие скачки, напряжение становится слишком высоким или перестает подаваться вообще. Для обеспечения бесперебойного снабжения сети и предотвращения аварийных инцидентов нужно правильно выставить значения ключевых параметров.

Минимальный предел напряжения

Он показывает лимит, ниже которого опускаться нельзя, в противном случае сеть будет работать с перебоями. Устанавливают границу в соответствии с документами, прилагаемыми к прибору.

Время возврата

АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВА

Важной настройкой является время возврата

Это промежуток, по прошествии которого происходит попытка перенаправления контактов к основному источнику при использовании резервной жилы. Когда пройдет этот период, аппарат проверяет параметры ведущей фазы. Если они соответствуют нормальным показателям, питание переходит на нее, если же нет, позже проводится повторная проверка по истечении такого же периода времени. Использование такого механизма дает возможность сэкономить ресурсы – например, покидая помещение, снабжаемое генератором, можно отключать двигатель на некоторый интервал (час-два). Выключать его на продолжительное время чревато сильным падением температуры в холодное время года и выходом электроприборов из строя, а использование обозначенной опции будет рациональным решением.

Время включения

Характеризует время, спустя которое прибор постарается включить питание в ситуации его отсутствия на всех токоведущих проводах. Создать сигнал можно посредством реле.

Схема подключения и порядок работы

АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВА

Типовая схема подключения

Самостоятельное подсоединение автомата переключения фаз рекомендуется проводить только при наличии достаточного опыта работ с электросетями, так как придется иметь дело с высоким напряжением. Некорректные операции способны вызвать межфазовое замыкание. Размещают аппарат на дин рейку внутри щитка. Обычно схема монтажа прибора описывается в прилагаемых к нему технических документах. Сначала производится подключение первичных цепей, затем – вторичных.

Когда мастер производит подключение переключателя линий электропитания в сеть, в роли питающего провода он может предпочесть любую из тройки фазовых жил. Для предотвращения заклинивания контактов реле выхода у прибора есть специальный блокиратор. Также внедрение устройства в цепь предотвращает возникновение перегрузок. Автоматические приборы оснащены опцией мониторинга контактов пускателей внешней электрической цепи.

Чтобы контакты встроенных в прибор выходных реле не залипали, устройство оснащено внутренней блокировкой. Кроме того, оно контролирует состояние контактов пускателей, которые имеются во внешней электроцепи. Использование этого прибора позволяет не допустить перегрузки по фазам.

Параметры установки АПФ

В технической документации к прибору и на его корпусе указываются два параметра – минимум и максимум напряжения, при которых возможна корректная работа сети. Особенно важен второй – при его превышении проводка перегорает, что может инициировать пожар. Если же напряжение падает слишком низко, устройство будет все время срабатывать.

Большое значение также имеют временные параметры – периоды включения и возврата. Помимо этого, монтер должен выбрать основную фазу. Ее используют по умолчанию, а если на ней возникают скачки напряжения, в дело идет резервная жила. При ее эксплуатации прибор продолжает мониторинг состояния ведущее жилы и, когда оно придет в норму, переключается на нее.

Особенности подключения и функционирования устройства

АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВАКак правило, прибор устанавливают в цепь следом за счетчиком электроэнергии. Подключенный переключатель обследует параметры напряжения в кабелях и подключает цепь к наиболее отвечающему требованиям. Аппарат непрерывно мониторит напряжение не только на основной фазе, но и на запасных, чтобы при внезапном выходе параметров ведущей жилы за заданные рамки без промедлений выбрать кабель, на который будет переключено питание. Когда в обоих резервных проводах параметры находятся в допустимых пределах, аппарат переключается от L1 к L2 и далее. При несоответствии разницы потенциалов всех кабелей заданным параметрам питаться не будет никакой из них. Когда на основной линии нормализуется напряжение, она будет включена в цепь.

Основные виды АПФ

В российских электросетях чаще всего используются два типа приборов – PF 451 и PF 431. Для выбора нужной модели пользователь должен представлять себе отличия между ними.

PF 431

АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВА

Защищает бытовые приборы от перепадов напряжения. Подойдет для домашней эксплуатации, в том числе владельцам холодильников, потребляющих более 1,5 кВт в сутки, систем видеонаблюдения и прочей аппаратуры, функционирующей продолжительное время ежедневно и потребляющей много мощности. Прибор контролирует разницу потенциалов на выходе. На вход ставят трехфазное напряжение, на выход – одну фазу в 220 В частотой в 50 Гц.

PF 451

Обеспечивает бесперебойную работу однофазной линии. От предыдущего отличается отсутствием опции установки ведущей фазы. Подключает ту из них, параметры напряжения которой близки к оптимальным.

Подключение устройства переключения фаз – хороший способ обеспечить стабильность снабжения промышленной или бытовой аппаратуры питанием. Также оно повышает степень электробезопасности, предохраняя цепь от перегорания проводки.

Автоматический и ручной переключатели фаз, какой выбрать и почему

Напряжение питающей сети не всегда соответствует требованиям потребителей. Если происходит его скачок с 220 В до 250 В, это может вывести из строя чувствительные электроприборы. В качестве защиты здесь можно применять переключатель фаз.

Переключатели фаз

Разнообразие типов переключателей фаз

Принцип действия

Переключатель обеспечивает выбор фазы, напряжение на которой соответствует установленным параметрам. Сам он подключается к трехфазной сети, а на выходе одна из фаз подключается к нагрузкам. Если напряжение на ней выходит за заданный диапазон, переключатель переводит потребителей на работу от другой фазы.

Ручные переключатели фаз

Цели применения устройств следующие:

  • переключение питающей сети;
  • запуск и остановка электродвигателей, включение трансформаторов и других приборов.

Главная цель механического переключателя – создание бесперебойного питания однофазной нагрузки и защита потребителей от скачков напряжений в сети.

На рисунке ниже изображена схема перекидного переключателя на 3 положения. К контактам (2), (4), (6) подключены 3 фазы, а к неподвижному контакту – нагрузка.

Схема

Схематичный вид 3х положений перекидного переключателя

Ручные кулачковые переключатели служат для коммутации цепей под напряжением до 380 В. Их используют при включении и выключении электроприборов, а также для создания главных и управляющих цепей. Устройства имеют небольшие габариты, выдерживают кратковременные перегрузки и обладают высокой коммутационной способностью. Когда производится выбор прибора, важно обращать внимание на номинальный ток.

Во многих конструкциях ручных переключателей предусмотрено нулевое положение, в котором электрические цепи остаются разомкнутыми. Это позволяет использовать их в качестве выключателей.

Электронные переключатели фаз

Для защиты однофазных потребителей от скачков напряжения в сети лучше подходит электронный прибор. Он автоматически переходит на другую линию, когда действующая линия не может нормально работать. Оборудование служит для питания бытовой и промышленной нагрузки.

Автоматический прибор большинства типов имеет следующие параметры установки:

  1. Минимальный и максимальный пределы напряжения. Особенно важен верхний предел, который следует правильно выставлять. Если его сделать слишком низким, начнутся частые срабатывания. При высоких значениях начнет перегреваться внутренняя проводка. Выбирается приоритетная фаза (L1) устройства переключения. Если на ней нет скачков напряжения, переход на линии (L2) или (L3) может не произойти. Если такое переключение будет иметь место, прибор продолжит слежение за приоритетной линией и при восстановлении необходимого уровня напряжения произойдет обратное переключение нагрузки. Если нижний и верхний пределы напряжения пересекаются в диапазоне отклонений на 10-20 В, прибор будет нестабильно работать. Поэтому важно сделать правильный выбор установок.
  2. Время возврата – интервал, в течение которого переключатель должен автоматически проверять состояние прежнего источника питания, чтобы вернуться в исходное состояние. Если оно в норме, происходит обратный переход. В противном случае следующая проверка произойдет через тот же промежуток времени. Выбор времени возврата делает пользователь, исходя из опыта, потребностей и особенностей работы электросети.
  3. Время включения – пауза, после которой прибор делает попытку включить питание нагрузки после того, как напряжение пропало на всех фазах.

Производители

Переключатели «АПАТОР» серии 4G

Российская компания “АПАТОР” производит изделия массового применения и выполненные по специальному заказу. Широкий ассортимент продукции позволяет подобрать подходящую замену изделиям других производителей.

Схемы коммутации предусматривают следующие варианты:

  • наличие или отсутствие нулевого положения переключателя;
  • ускоренная коммутация;
  • многопозиционные переключения при количестве полюсов от 1 до 8;
  • групповые переключения.

Положение кулачкового переключателя, как изображено на рисунке ниже, обеспечивает замыкание электрической цепи верхними подвижными контактами (3) и неподвижными (1). Проводники зажимаются винтами (12).

Схема

Схема строения переключателя компании “АПАТОР” на основе кулачкового механизма

При повороте кулачка (2) на 90 0 против часовой стрелки верхний шток (5) поднимается вверх под действием пружин и размыкает цепь. Нижний шток поднимается вверх вместе с подвижными контактами, замыкая нижнюю электрическую цепь.

Кулачковый механизм имеет следующие достоинства:

  • надежную коммутацию;
  • устойчивость к перегрузкам;
  • малое сопротивление замкнутых контактов;
  • высокую скорость замыкания и размыкания контактов;
  • небольшие усилия переключения;
  • возможность создания многочисленных схем переключений одним и тем же механизмом;
  • длительный срок эксплуатации.

Устройство переключателей позволяет легко производить коммутацию электрических цепей без лишнего давления на ручку. Ее искусственное торможение также делать нецелесообразно.

Фирма «АПАТОР» изготавливает специальные переключатели, рассчитанные на номинальный ток 100 А. Высокая нагрузка обеспечивается за счет дублирования контактов. Устройства можно применять в качестве основных выключателей.

Переключатели «SOCOMEC SCP»

Производитель «SOCOMEC SCP» (основан во Франции) выпускает несколько типов аппаратов. Наиболее популярными являются многополюсные переключатели COMO C (преимущественно трех,- и четырехполюсные). Устройствами можно безопасно переключать и выключать нагрузки от 25 А до 100 А (рис. а). Разрыв контакта – видимый.

Переключатели фаз

Различные типы переключателей фаз от компании «SOCOMEC SCP»

Sirco VM commut – многополюсный ручной переключатель (рис. б) обеспечивает питание нагрузки от двух источников. Номинальный ток составляет 65-125 А. При отключении остается видимый разрыв.

SIRCOVER M (рис. в) является перекидным рубильником с ручным управлением и несколькими полюсами. Устройство обеспечивает отключение или включение источников питания на нагрузку.

Переключатель фаз SPH-41

Устройство обеспечивает подключение однофазного потребителя к трехфазной четырехпроводной сети (производитель ООО “Вектор”, Россия). Автоматический прибор устанавливается после счетчика, выбирает самую надежную по параметрам фазу и подключает к ней потребителя. Затем производится контроль за напряжением. Выбор и установка его верхнего и нижнего допустимых пределов делается заранее.

Переключатели фаз

Переключение фаз в автоматическом режиме

Переключатель ПЭФ-301 изображен на рисунке ниже (производитель ООО НПК “Электроэнергетика”). Прибор предназначен для питания однофазной бытовой и промышленной нагрузки от трехфазной сети. Устройство автоматически выбирает фазу с лучшими параметрами и подключает к ней нагрузку. Потребители до 3,5 кВт связаны с сетью через прибор (рис. а). Приоритетной является фаза L1. При выходе значения напряжения за порог срабатывания, ПЭФ-301 переключает потребителя на другую фазу с помощью контактов (7-8), (9-10), (11-12) на выходе прибора.

При большей мощности нагрузки выходные контакты прибора связаны с катушками магнитных пускателей, которые управляют силовыми контактами подачи напряжения через фазу с лучшими характеристиками (красный, зеленый и черный на рис. б).

Схема

Схемы подключения автоматического переключателя фаз

3х фазный переключатель. Видео

Обзор трехфазного переключателя для дома доступен в видео ниже.

Переключатель фаз в доме или квартире можно ставить ручной или автоматический. Электронный переключатель фаз обеспечивает максимальный комфорт, поскольку выполняет всю работу без вмешательства и не требует постоянного контроля. Следует только произвести правильную настройку его работы, и он надежно защитит бытовые электроприборы.

Оцените статью:

устройство, принцип работы, схема подключения

Устройство и принцип работы

Переключатель фаз – это устройство, которое подключает вместо основной фазы любую другую, в которой напряжение ближе к норме, когда на основной линии питание пропадает или выходит за установленные пределы. Если вы еще не поняли, для чего нужен этот прибор, давайте рассмотрим подробнее.

Из определения следует, что на вводные клеммы переключателя фаз поступает трёхфазное питание, а выходит из него одна, качество напряжения которой ближе всех к норме. Само переключение происходит при скачках, просадках или полном исчезновении основной. Выбор основной линии осуществляется в зависимости от конкретного варианта. Отсюда следует ограничение – работать переключатель фаз должен в трёхфазной сети. Он может быть использован и для генератора, но тогда, нужно продумать, как сформировать управляющий импульс для его запуска. Аппарат может быть ручным и автоматическим.

Ручной

Автоматический

Принцип работы заключается в переборе линий, до момента нахождения той, у которой оптимальные параметры с помощью переключения группы реле микроконтроллером.

Кроме автоматических переключателей фаз часто встречаются и ручные варианты. Ручной переключатель представляет собой 3-х позиционный кулачковый переключатель, иногда его называют «пакетник». При этом встречается в продаже и 2-х позиционный и 4-х позиционный переключатель в зависимости от потребностей потребителя.

Маломощные механические модели переключателей нужны не для коммутации нагрузки, а для переключения измеряемой вольтметром линии. Порядок переключения может отличаться, например 0-1-0-2-0-3, где 0 – отключены все фазы, а 1,2 и 3 – это номер выбранной линии. Мощные модели удобно использовать для реверса двигателя или подключения нагрузки, можно производить переключения под напряжением.

Будьте внимательны переключатель на 3 положения не факт, что будет переключать три фазы, возможно, его позиции – 1-0-2, т.е. первая пара контактов замкнута, отключено и вторая пара контактов. Ознакомьтесь с документацией на него и проверьте схему переключений, если документации нет – проверить можно обычной прозвонкой.

Как выбрать переключатель фаз

Мы рассмотрели, как работает переключатель фаз, теперь давайте узнаем, на что нужно смотреть при выборе автоматических моделей. Кроме силовых параметров в ПФ добавляют функции, которые упрощают процесс настройки и эксплуатации.

Первое и самое главное – это ток. Чтобы переключатель фаз подошёл к вашей системе электроснабжения, главный критерий, на который нужно смотреть при выборе – это допустимый ток. Не стоит покупать аппарат, ток которого превышает номинальный ток вводного автомата. Хотя и селективность защиты должна обеспечить безопасный режим работы, но не будет лишним привести электросеть в соответствие по допустимому току и мощности.

Номинальный ток

Второй параметр – возможность регулировки. На дешевых переключателях вообще нет возможности выставить величину минимального и максимального напряжения в электропитающей сети, при котором происходит переключение, выбор приоритетной фазы. Минимальный набор регулировок – это установка минимального напряжения, при котором могут работать приборы, максимального. В более совершенных моделях можно отрегулировать время, через которое нужно попытаться перейти на основную фазу и прочие настройки.

ПЭФ-319 с регулировкой параметров

Третий параметр – способ отображения и индикации. В более простых моделях имеется светодиодная индикация, обычно по одному светодиоду на фазу и дополнительный индикатор «АВАРИЯ». Когда линия в норме и к ней подключена нагрузка, соответствующий светодиод горит, например, зеленым цветом, когда линия в норме, но она находится в резерве – светодиод мерцает, когда по всем линиям имеются проблемы – горит индикатор «АВАРИЯ». В более продвинутых моделях установлен семисегментный индикатор или LCD дисплей. Назначение индикаторов: отображать величину напряжения, параметры настроек, включенную и приоритетную фазу. Наименее наглядный способ индикации – отдельные светодиоды, а самый очевидный – ЖК-дисплей.

Современная индикация

Четвертый параметр – функционал. Простейший ПФ имеет набор предустановленных параметров питающей сети, принятых за норму, и стремится придерживаться их. Но каждый электроприбор требует индивидуальный подход к питанию, обычно это 220 +/- 10% В, а в некоторых случаях допуск может быть увеличен, или наоборот – уменьшен. В более продвинутых моделях эти величины устанавливаются путем поворачивания винтов или ручек в нужное положение, согласно градуировке. Самые функциональные – это модели с дисплеем и сенсорным управлением. При этом не стоит считать, что чем проще – тем хуже, часто не стоит переплачивать деньги за функции, которые не пригодятся.

Если мощности вашего переключателя не хватает для обеспечения нужд, решить эту проблему можно двумя способами:

  1. Купить переключатель, рассчитанный на больший ток.
  2. Установить электромеханический коммутатор так, чтобы к выходным клеммам переключателя фаз была подключена катушка пускателя или контактора. Таким образом, вся нагрузка ляжет на силовые контакты последнего.

Область применения

Повторимся, что прежде чем заказать переключатель, вы должны знать – для его работы нужно 3 фазы. Резервные линии берутся именно с дополнительных фаз. Между фазами напряжение 380 Вольт, его называют «линейное», а между фазой и нулем 220 Вольт, его называют «фазным». Они связаны между собой, но в пределах этой статьи мы не будем углубляться в основы электротехники. Главное чтобы вы поняли, что для подключения к электросетям нужно наличие трёхфазной сети именно 380 Вольт.

Переключатель между фазами в щитке

Как уже было сказано, применяется этот прибор для подключения резервной линии. Это работает только в том случае, если одна из фаз трансформатора перегружена или произошел перекос. В случаях, когда на ввод трансформатор поступает «плохое» напряжение нужен автоматический ввод резерва с другой линии, переключатель фаз в этой ситуации не поможет.

Питание установок с непрерывным режимом работы осуществляется от переключателя фаз. Предлагаю рассмотреть область применения в наглядных примерах.

  • аппараты жизнеобеспечения;
  • холодильники с лекарствами в аптеках;

На производстве и в офисах:

  • средства автоматизации;
  • управляющая и аппаратура отслеживающая, записывающая сигналы;
  • средства связи, стационарные радиостанции, диспетчерское оборудование;
  • системы вентиляции;
  • газовый котел;
  • система охраны;
  • видеонаблюдение;
  • система «умный дом»;

Схема подключения

После покупки у вас может возникнуть трудности с тем, как подключить переключатель фаз. Если у вас нет опыта работы с электричеством, лучше не стоит пробовать, так как вам придется работать с высоким напряжением в трёхфазной сети – 380 Вольт. Кроме того неправильное использование и подключение подобного оборудования может привести к замыканию между фазами.

Подключение переключателя фаз

Переключатель фаз – это модульный прибор, который устанавливается в щиток на объекте на дин рейку. Перед ним устанавливается трёхфазный автоматический выключатель. После монтажа первичной цепи переходим к выходным. Но как подключить вторичные цепи зависит от модели переключателя. Схема подключения обязательно указывается в техническом паспорте или другой подобной документации и может отличаться от производителя к производителю.

Напоследок рекомендуем просмотреть видео, на котором более подробно рассказывается, что такое переключатель фаз и как его подключить в щитке:

Переключатель фаз – бюджетный способ повысит стабильность подачи электроэнергии, особенно актуально это может быть за городом в коттедже, в дачном поселке, где обычно бывают перебои с электричеством. Мы рассказали о том, как подключить и где установить, а также обо всех параметрах таких устройств. Выбор бесперебойной подачи остаётся за вами исходя из потребностей и бюджета.

Будет полезно прочитать:

Переключатель фаз. Виды и работа. Применение и как выбрать

Переключатель фаз предназначен для надежной работы электропитания и резервного снабжения электроэнергией. Городские энергораспределительные сети не всегда поставляют качественный ресурс. Из-за резких перепадов напряжения любой электроприбор может выйти из строя. С помощью переключателей фаз обеспечивается бесперебойный режим функционирования приборов и оборудования во время колебания напряжения.

Виды устройств

Производители предлагают большой выбор приборов под разные цели эксплуатации.

Условно переключатели можно разделить на две большие группы:
  • Автоматические в зависимости от показателей напряжения автоматически происходит переключение на другую линию, когда действующая не справляется с нагрузкой и не может нормально работать. Микропроцессорное цифровое устройство произвольно выбирает сетевую фазу. Приоритетной может быть любая фаза.
  • Ручные необходимый режим выбирается вручную. Компактный прибор работает под постоянным контролем и наблюдением данных электрической сети. Специфика работы зависит от количества и качества напряжения на фазах. С помощью прибора выбирается оптимальная фаза и подается питание.
Функции прибора

С помощью переключателя фаз регулируются верхние и нижние параметры напряжения. Предварительно делается настройка прибора. Особое внимание требует установка верхнего показателя. Если установить завышенные значения, возможен перегрев внутренней проводки. Заниженный уровень влечет постоянные срабатывания переключателя.

Устройство имеет функцию времени возврата. Через определенный промежуток времени проверяется основной источник питания. Если показатели в норме, делается обратный переход на предыдущее место. Либо через установленный промежуток вновь проверяется напряжения. Процесс продолжается до тех пор, пока в сети не восстановится нормальное напряжение. Диапазон времени устанавливается специалистом.

Когда напряжение пропадает на всех фазах, срабатывает функция времени включения. Промежуток также настраивается перед началом эксплуатации прибора.

Принцип действия

Устройство во время работы выбирает фазу, которая соответствует допустимому показателю напряжения. Прибор всегда подключает нагрузку к той фазе, которая находится в пределах нормы.

Современные приборы управляются микроконтроллерами:
  • Они анализируют напряжение.
  • Управляют электромагнитными реле.
  • Отображают данные на цифровых индикаторах.

Переключатель и линии необходимо защищать автоматическими выключателями. Если напряжение находится в пределах нормы, к одной из фаз происходит подключение. Можно включить режим приоритетной фазы, к которой будет подключаться нагрузка.

Если при включенном режиме на приоритетной фазе напряжение выйдет за установленные пределы, прибор переключает нагрузку на следующую фазу. После возврата напряжения в установленные пределы, через определенное время задержки возврата прибор переключает нагрузку обратно.

Цифровой переключатель фаз управляется микроконтроллером, который анализирует напряжение.

На индикаторах переключателя фаз отображается действующее напряжение по каждой фазе. Предварительно можно включить режим приоритетной фазы, в которой будет подключаться нагрузка.

Если данный режим не включать, нагрузка сама подсоединится к первой фазе. При включенном режиме напряжение на приоритетной фазе может выйти за установленные пределы. Прибор переключит нагрузку на следующую фазу.

После возврата напряжения на основную фазу, через заданное время задержки возврата прибор переключит нагрузку обратно. Если режим основной фазы выключен, то питание нагрузки первоначально осуществляется от первой фазы.

Во избежание ложных отключений при переключений пускового тока или напряжение текущей фазы кратковременно ушло вниз, но остается больше 120 V, переключение можно настроить с временной задержкой.

О том, что напряжение вышло за установленные пределы, оповестит мигающий индикатор. Нагрузка будет запитываться от другой фазы. При выходе напряжения за пределы нормы на всех трех фазах прибор отключает нагрузку до нормализации какой-либо из фаз.

Настройка параметров

При нажатии на кнопку отображается значение верхнего предела отключения. Изменить значение можно с помощью кнопок вверх или вниз. При последующем нажатии отобразится значение нижнего предела отключения, которые тоже можно изменять.

  • Выбирается режим приоритетной фазы.
  • Время задержки первого включения в секундах.
  • Задержку возврата на приоритетную фазу.
  • И время задержки переключения по нижнему пределу выше 120 вольт.

Для сброса всех значений на заводские установки нажимается соответствующая кнопка. На индикаторе высветится предупреждение и начнется обратный отсчет времени, затем произойдет сброс. Стабильность работы прибора, в большей степени, зависит от правильной настройки.

Применение

Переключатель фаз используется в промышленном и бытовом оборудовании для подачи питания и защиты от повышенного или пониженного напряжения.

Область использования:
  • Освещение.
  • Автоматика газового котла.
  • Компьютерные сети и серверы.
  • Сигнализация и прочие объекты.

Преимущественно используются в трехфазной сети с выходом на одну фазу. Сверху подключается три фазы и ноль. Внизу находится соединительная шина с отходящей фазой. От нее запитывается нагрузка и ноль. Переключатель и линии необходимо защищать автоматическими выключателями.

Как выбрать

Прежде, чем приобрести прибор, надо хорошо понимать, где планируется установка, и какие функции будут возлагаться. Одно дело – установка оборудования на производстве, другое – для домашнего потребления электричества.

Электронные автоматы с микропроцессором имеют герметичные реле с отдельным управлением, мощностью 40 — 80 A. Во время перебоя напряжения определяется фаза и подается на выход. Выпускаются они от недорогих с ограниченными возможностями (ПФ-40А) до модернизированных (DigiTOP).

У потребителя большие возможности в плане выбора. Одни ценят новейшие изобретения, другие – приверженцы простых, но надежных и проверенных временем.

Достоинства и недостатки

Автоматический переключатель фаз обладает большой точностью и надежностью. Благодаря внутренней блокировке исключается залипание контактов реле. Самостоятельно, без участия пользователя контролирует напряжение и выбирает наиболее подходящую фазу.

Наряду с положительными качествами, требуется максимальная точность в настройке и подключении. Если все сделано правильно, безопасный электрический ток долгое время будет защищать приборы и устройства от перебоев напряжения.

Ручной переключатель, в основном, используются в местах, где можно обойтись без большого напряжения. Из достоинств можно выделить:
  • Устойчивость к перегрузкам.
  • Имеет небольшие размеры.
  • Относительно невысокая стоимость.
  • Удобный и простой в использовании.
  • В некоторых конструкциях можно применять, как выключатели.
Недостатки

Приборы должны находиться под контролем. Ручное переключение всегда предполагает присутствие человека.

Автоматический переключатель фаз в загородных домах

Проблема частых перебоев электроэнергии, а также поставки некачественного ресурса в загородных домах решается установкой и наладкой щитка с автоматическим переключением фаз и ручным вводом резерва.

Сборка предполагает:
  • Автоматическое переключение на исправную фазу от трехфазного ввода и питание однофазных потребителей.
  • Ручное переключение с питания города на генератор.
  • Защита трехфазных потребителей при исчезновении одной из фаз.

Автоматический переключатель фаз управляет включением одного из трех магнитных реле. В зависимости от того, какая фаза исправна, переключатель включает соответствующий пускатель. На выходе силовые контакты магнитного пускателя соединены. Подключается однофазная нагрузка.

В нормальном режиме, когда исправны все три фазы, задействована только одна фаза. Это единственный минус схемы. Несколько неразумно использовать трехфазный ввод в качестве только одной фазы. Вариант оправдывает себя на случай аварии. Для модернизации схемы предполагается автоматический переключатель фаз с приоритетом первой фазы.

Когда произошла неисправность в первой фазе, происходит переключение на другую фазу, как только неисправность устранилась, снова включается первая фаза. Для реализации проекта используется реле в модульном исполнении со светодиодами. Регулятор устанавливает время реакции срабатывания по нижнему и верхнему порогу.

Похожие темы:

Автоматический переключатель фаз. Схемы подключения и принцип работы

Потребители часто задумываются над повышением качества и надежности напряжения в сети, а также защиты от непредвиденных и опасных отключений и колебаний сетевого напряжения.

Существует целый класс устройств предназначенных для устранения таких проблем, разные способы, самодельные и ручные, но существуют приборы призваны в автоматическом режиме следить за всевозможными изменениями.

В электрике существует такое понятие как АВР — автоматический ввод резерва. Такие устройства призваны автоматически переключаться на вторую линию или резервное питание, если основная линия обесточивается.

В роли второй линии может быть:

  • одна из фаз трехфазной сети
  • линия бензинового или дизельного генератора (с авто запуском)
  • ветрогенератор или солнечная панель с контролером заряда и аккумуляторными батареями
  • аккумулятор с автоматической зарядкой от сети

Такое устройство для домашней реализации подобных функций, называется — автоматический переключатель фаз (АПФ)
Прибор имеет 3 ввода для подключения трехфазной сети или трех разных источников напряжения, выход в устройства однофазный, два контакта — фаза и ноль.
С помощью механического реле и специальной микропроцессорной электронной платы устройство в автоматическом режиме определяет наиболее подходящую фазу и питает свой выход от такой линии.

Какой же принцип работы устройства?

В большинства устройств линия ввода трехфазная, поэтому на ввод подключают три фазы (L1, L2, L3)
Основной и приоритетной считается — L1, а две остальные — резервные и если на первой фазе происходит ухудшения качества напряжения или напряжение полностью пропадает, выход сразу же переключается на другую линию которая качеством напряжения наиболее оптимальна.

Технически такое устройство не представляет ничего сложного, его можно повторить с помощью релейных модулей, но такой вариант займет намного больше места в электрощитке и к тому же не все параметры возможно будет контролировать.
Во-вторых чем больше отдельных частей и модулей разных производителей тем больше шанс неработоспособности устройства АПФ в целом.
Удобней всего применять готовое устройство АПФ.

Прибор работает по такому принципу что одновременно может быть включено лишь одно из трех реле. Плата устройства определяет приоритетность автоматически и для потребителя такое переключение практически незаметно.

Как показывает практика, самым востребованным вариантом является АПФ на две линии с разнообразными функциями защиты и контроля напряжения. Отдается предпочтение конкретно устройствам резервного питания и дополнительной функцией формирования сигнала запуска бензогенератора.
Помимо этого есть модели со встроенным реле напряжения и индикации на каждой линии отдельно, где можно самому настраивать пороги сработки по максимуму и минимуму.

Схема подключения автоматического переключателя фаз

Стандартной схемой подключения считается «прямая» схема в которой выходные фазы после устройства соединяются перемычками, но недостатком такого варианта будет мощность, она будит ограничена мощностью устройства (встроенным в него реле) и как правило это не больше 3.5 кВт, что согласитесь очень мало для большого дома.

Поэтому если предполагается большая нагрузка, применяют вариант схемы с тремя магнитными контакторами. Принцип работы такой, что АПФ управляет контакторами, а они в свою очередь уже коммутируют силовую часть схемы.

Источник https://blogforconsultants.ru/main/resheniya-dlya-avtomaticheskogo-vvoda-rezerva-avr/

Источник https://tokzamer.ru/novosti/avtomat-perekljucheniya-na-rezervnoe-pitanie

Источник https://prokapitalinvest.ru/avtomaticheskie-linii/avtomaticheskoe-vkljuchenie-rezerva/

Предыдущая статья Как открыть вклад под высокий процент? В каком банке открыть вклад.
Следующая статья Этапы и процедуры составления бизнес-плана