Защита кабеля от механических повреждений — ПУЭ, фото, видео
Содержание
Защита кабеля от механических повреждений — ПУЭ, фото, видео
Преимущественное большинство сетей электрического питания в городах или на территории крупных предприятий прокладывается кабелем. Из-за отсутствия возможности визуального контроля при выполнении каких-либо земляных робот в местах прохода подземных коммуникаций существует угроза их повреждения. Для исключения возможности нарушения целостности изоляции, как следствие, прекращения электропитания и для воспрепятствования аварийным ситуациям используется защита кабеля от механических повреждений.
Некоторые модели кабеля защищаются броней, которая покрывается дополнительной изоляцией. Но таких мер бывает недостаточно, так как стальная оболочка не способна воспринять всю нагрузку от механических усилий. Тем более что металлическая оболочка в бронированных кабелях под воздействием усилий может деформироваться, из-за чего возникает сжатие изоляции.
Требования к защите кабеля
Наиболее жесткие требования по нормам, предъявляются к защите при подземной укладке. Так, в готовой траншее должна обустраиваться подушка из песка или граншлака, на которой размещаются плиты. Для моделей напряжением более 35 кВ толщина плит должна составлять не менее 50 мм.
Линии меньшего напряжения могут иметь защиту не плитами, а кирпичом из обожженной глины. Но для этого категорически запрещается использовать кирпич с отверстиями, через которые будет попадать грунт при засыпке траншеи. Также запрещается использовать силикатный кирпич, так как со временем он утрачивает механическую прочность и не может выполнять сигнальные функции. Так как помимо защиты от повреждения оболочки кабеля кирпич должен сигнализировать о расположении под ним участка трасы.
Так как сильная натяжка приводит к порыву во время снижения температуры или при перемещении грунта, то его расположение в траншее должно быть свободным. Но и делать слишком большие волны тоже не стоит.
Рис. 4. Прокладка в земле без натяжения
При прохождении линии под дорогами, магистралями защита кабеля осуществляется металлической трубой. При этом асбестовые или стальные трубы защищают от просадки толщи грунта во время движения крупнотоннажных автомобилей. В противном случае может произойти порыв от движения слоев грунта, даже под грунтовыми дорогами. Но, в то же время, запрещено размещать сразу несколько кабелей в одной трубе, в таком случае делается дополнительная прокладка в соседней трубе.
Укладка защитной ленты должна осуществляться из такого расчета, чтобы расстояние от наружной изоляции до ленточной защиты составляло не менее 250 мм. Помимо этого края ленты должны выступать на расстояние не меньше 50мм в каждую сторону над кабелем. А вот в местах пересечений трасы или над кабельными муфтами укладывать ленту категорически запрещается, чтобы защита кабеля не мешала проведению ремонтных работ. Также существует ряд рекомендаций по засыпке траншеи, которые можно увидеть на рисунке 5.
Рис. 5. Укладка ленты над кабелем
Для линий до 1 кВ защита кабеля может осуществляться лишь в местах вероятного повреждения.
Кладка кирпичного слоя для защиты, в отличии от слоя ленты, выполняет не только роль сигнализатора, но и предоставляет реальную защиту от той же лопаты, лома и прочего инструмента или механических воздействий. Но такой способ прокладки регламентирует и ряд особенностей по укладке кирпича. Так, для защиты кабеля, в отличии от кабельных блоков, расположение кирпичей имеет особую технологию. Рассмотрите пример расположения, в зависимости от ширины траншеи на рисунке:
Рисунок 6: Схема укладки кирпича
Глубина заложения кабельных линий от планировочной отметки должна быть не менее: линий до 20 кВ 0,7 м; 35 кВ 1 м; при пересечении улиц и площадей независимо от напряжения 1 м.
Кабельные маслонаполненные линии 110-220 кВ должны иметь глубину заложения от планировочной отметки не менее 1,5 м.
Допускается уменьшение глубины до 0,5 м на участках длиной до 5 м при вводе линий в здания, а также в местах пересечения их с подземными сооружениями при условии защиты кабелей от механических повреждений (например, прокладка в трубах).
Прокладка кабельных линий 6-10 кВ по пахотным землям должна производиться на глубине не менее 1 м, при этом полоса земли над трассой может быть занята под посевы.
Расстояние в свету от кабеля, проложенного непосредственно в земле, до фундаментов зданий и сооружений должно быть не менее 0,6 м. Прокладка кабелей непосредственно в земле под фундаментами зданий и сооружений не допускается. При прокладке транзитных кабелей в подвалах и технических подпольях жилых и общественных зданий следует руководствоваться СНиП Госстроя России.
При параллельной прокладке кабельных линий расстояние по горизонтали в свету между кабелями должно быть не менее:
1) 100 мм между силовыми кабелями до 10 кВ, а также между ними и контрольными кабелями;
2) 250 мм между кабелями 20-35 кВ и между ними и другими кабелями;
3) 500 мм* между кабелями, эксплуатируемыми различными организациями, а также между силовыми кабелями и кабелями связи;
* Согласовано с Министерством связи СССР.
4) 500 мм между маслонаполненными кабелями 110-220 кВ и другими кабелями; при этом кабельные маслонаполненные линии низкого давления отделяются одна от другой и от других кабелей железобетонными плитами, поставленными на ребро; кроме того, следует производить расчет электромагнитного влияния на кабели связи.
Допускается в случаях необходимости по согласованию между эксплуатирующими организациями с учетом местных условий уменьшение расстояний, указанных в п. 2 и 3, до 100 мм, а между силовыми кабелями до 10 кВ и кабелями связи, кроме кабелей с цепями, уплотненными высокочастотными системами телефонной связи, до 250 мм при условии защиты кабелей от повреждений, могущих возникнуть при КЗ в одном из кабелей (прокладка в трубах, установка несгораемых перегородок и т. п.).
Расстояние между контрольными кабелями не нормируется.
При прокладке кабельных линий в зоне насаждений расстояние от кабелей до стволов деревьев должно быть, как правило, не менее 2 м. Допускается по согласованию с организацией, в ведении которой находятся зеленые насаждения, уменьшение этого расстояния при условии прокладки кабелей в трубах, проложенных путем подкопки.
При прокладке кабелей в пределах зеленой зоны с кустарниковыми посадками указанные расстояния допускается уменьшить до 0,75 м.
При параллельной прокладке расстояние по горизонтали в свету от кабельных линий напряжением до 35 кВ и маслонаполненных кабельных линий до трубопроводов, водопровода, канализации и дренажа должно быть не менее 1 м; до газопроводов низкого (0,0049 МПа), среднего (0,294 МПа) и высокого давления (более 0,294 до 0,588 МПа) — не менее 1 м; до газопроводов высокого давления (более 0,588 до 1,176 МПа) — не менее 2 м; до теплопроводов — см. 2.3.89.
В стесненных условиях допускается уменьшение указанных расстояний для кабельных линий до 35 кВ, за исключением расстояний до трубопроводов с горючими жидкостями и газами, до 0,5 м без специальной защиты кабелей и до 0,25 м при прокладке кабелей в трубах. Для маслонаполненных кабельных линий 110-220 кВ на участке сближения длиной не более 50 м допускается уменьшение расстояния по горизонтали в свету до трубопроводов, за исключением трубопроводов с горючими жидкостями и газами, до 0,5 м при условии устройства между маслонаполненными кабелями и трубопроводом защитной стенки, исключающей возможность механических повреждений. Параллельная прокладка кабелей над и под трубопроводами не допускается.
ПУЭ: мифы и факты
Несколько лет назад мы уже разъясняли, что в России существует законодательство, которое достаточно четко даёт определение типам кабельных конструкций, а также как и где их можно эксплуатировать. Сегодня хотелось бы ещё раз вернуться к этим вопросам, попытаться более расширенно ответить на них и развеять несколько мифов.
Миф 1: Правила ПУЭ писались 70 лет назад, устарели и не действуют.
Совершенно верно, первое издание ПУЭ было опубликовано в 1947 году и несколько раз переиздавалось. По поводу “не действует” придется вас разочаровать — правила не только действуют, но и используются в судебных разбирательствах.
Скриншот Информационно-Правового Обеспечения ГАРАНТ
На момент написания статьи, правовая система ГАРАНТ насчитывала 6781 судебную практику, в которых решения выносились, основываясь именно на Правила Устройства Электроустановок. Особо хотелось отметить 80 дел, рассмотренных Верховным судом РФ, по определению являющимся высшим судом, т.е. конечной инстанцией в спорах субъектов.
Миф 2: Если кабельную линию поднять на 2 метра, то кабель будет защищён.
В разделе «Общие требования» ПУЭ поставлены абсолютно четкие задачи по защите кабельной линии от перегрева, коррозии и обеспечения сохранности при механических воздействиях. Акцентирую особое внимание на то, что сохранность следует выполнять “превентивно”.
- п.2.3.14 Трасса кабельной линии должна выбираться с учетом наименьшего расхода кабеля, обеспечения сохранности кабеля при механических воздействиях, обеспечения защиты от коррозии, вибрации, перегрева…
Давайте разберёмся почему? Любое промышленное предприятие является источником повышенной опасности, на территории которого функционируют подъемные механизмы и транспорт, проводятся регламентные работы и модернизация действующих сетей, в т.ч. сварочные работы и многое другое.
Правила ПУЭ именно в превентивном ключе требуют защищать кабель не «от», а «при» механических воздействиях. То есть моделируется ситуация, что рано или поздно это воздействие произойдет!
Прочтем фразу еще раз: «обеспечения сохранности кабеля при механических воздействиях«.
Поэтому, одно лишь только поднятие кабельной линии не является выполнением требований ПУЭ, в рамках защиты кабеля при механических воздействиях.
Миф 3: Кабельный лоток с крышкой обеспечивает кабель защитой.
Де-факто, возможно такая комбинация, может быть, обеспечивает в какой-то степени защиту кабелю, де-юре однозначно нет. Могу в очередной раз привести два пункта ПУЭ, классифицирующие изделия по степени защищенности:
- п. 2.1.10. Короб должен служить защитойот механических повреждений, проложенных в нем проводов и кабелей.
- п. 2.1.11. Лоток не является защитой кабеля от внешних механических повреждений, проложенных на нем кабелей.
Лотки, даже с крышками, по всем документам: рабочая документация, спецификация материалов, накладная, счет-фактура, а самое главное паспорт изделия — остаются кабельными лотками.
Смесь бульдога с носорогом
Поэтому скрещивание «бульдога с носорогом”, способствует лишь появлению юридического урода, рожденного в воображении того кто это придумал.
Напомню, что суды (см. Миф 1), в равной степени, как и компетентные органы, в своих экспертных заключениях основываются не на домыслах, а на определениях данных в Правилах Устройства Электроустановок.
Миф 4: В кабельных лотках я могу прокладывать силовой кабель любого сечения.
В силу профессиональной деятельности (семинары, выставки, письма) мне приходится общаться с разными специалистами, дискутировать и анализировать полученную информацию, что, несомненно, расширяет кругозор.
- В кабельных сооружениях прокладку контрольных кабелей и силовых кабелей сечением 25 кв. мм. и более, за исключением небронированных кабелей со свинцовой оболочкой, следует выполнять по кабельным конструкциям.
- Контрольные небронированные кабели, силовые небронированные кабели со свинцовой оболочкой и небронированные силовые кабели всех исполнений сечением 16 кв. мм. и менее следует прокладывать по лоткам или перегородкам.
Отсюда, правила допускают прокладывать в лотках небронированный кабель сечением до 16 кв. мм. включительно, а кабель сечением 25 кв. мм. и более только по кабельным конструкциям.
Миф 5: Существует 6 типов атмосфер C1, C2, C3, C4, C5-I, C5-M.
Действительно, согласно DIN 12944-2 в странах Евросоюза существует шесть типов атмосфер. Многие Российские производители по непонятным нам причинам ссылаются и даже приводят графики коррозии изделий в данных типах атмосфер.
В России, согласно ГОСТ 15150-69, существует не 6, а 4 типа атмосферы, отличающиеся наличием коррозионных агентов, от содержания которых напрямую зависит срок эксплуатации кабельных металлоконструкций.
Типы атмосфер по ГОСТ 15150-69
Официальных данных для пересчёта типов атмосфер с DIN на ГОСТ, не существует, да они собственно и не нужны при наличии ГОСТ.
Будьте придирчивы, ведь несоответствие сроков эксплуатации оборудования Российскому законодательству, это мина замедленного действия, которая может разорваться и через 5, и через 10, и через 15 лет.
Выводы
Итак, сегодня мы разобрали лишь малую часть нормативных документов, незнание которых, как вы понимаете, не освобождает от ответственности. Какие выводы следуют из всего описанного?
- Правила Устройства Электроустановок действуют;
- Кабель должен быть защищен при механических воздействиях;
- Защиту от механических воздействий обеспечивает кабельный короб;
- Для кабеля 25 кв. мм. и более нужны кабельные конструкции;
- Срок эксплуатации необходимо рассчитывать по ГОСТ.
Решение
Одним из эффективных решений для соблюдения Российского законодательства является разработка специалистов ГК КОРОБОВ — перфокор четырехбортный, который максимально полно отвечает действующим требованиям.
- Полная механическая защита кабеля;
- Легкая кабельная конструкция;
- Естественная вентиляция.
- B — электромагнитный расцепитель (ЭР) срабатывает в пределах от 3 до 5-кратного тока от номинального (3·In до 5·In)
- C — (ЭР) срабатывает в пределах от 5 до 10-кратного тока от номинального (5·In до 10·In)
- D — (ЭР) срабатывает в пределах от 10 до 20-кратного тока от номинального (10·In до 20·In, но встречаются иногда и 10·In до 50·In)
- 10 (А) — 11,3 (А)
- 16 (А) — 18,08 (А)
- 20 (А) — 22,6 (А)
- 25 (А) — 28,25 (А)
- 32 (А) — 36,16 (А)
- 40 (А) — 45,2 (А)
- 50 (А) — 56,5 (А)
- 10 (А) — 14,5 (А)
- 16 (А) — 23,2 (А)
- 20 (А) — 29 (А)
- 25 (А) — 36,25 (А)
- 32 (А) — 46,4 (А)
- 40 (А) — 58(А)
- 50 (А) — 72,5 (А)
- 1,5 кв.мм — защищаем автоматом на 10 (А)
- 2,5 кв.мм — защищаем автоматом на 16 (А)
- 4 кв.мм — защищаем автоматом на 20 (А) и 25 (А)
- 6 кв.мм — защищаем автоматом на 25 (А) и 32 (А)
- 10 кв.мм — защищаем автоматом 40 (А)
- 16 кв.мм — защищаем автоматом 50 (А)
- Кt = 1,1
- Кn = 0,82
Перфокор четырехбортный: короб-конструкция, снабженный интегрированной рамой со скрытыми вентиляционными отверстиями. Изделие является кабельным коробом (п. 2.1.10 ПУЭ), конструкцией для прокладки кабеля сечением свыше 25 кв. мм. (п. 2.3.123 ПУЭ) и обеспечивает естественную вентиляцию, согласно «Общих требований» (п. 2.3.14 ПУЭ).
Перфокор сочетает в себе свойства сразу нескольких классических изделий. Перфокор обеспечивает механическую защиту кабеля на уровне кабельного короба, при этом осуществляется его естественная вентиляция, как у перфорированного лотка.
Степень защищенности изделий ГК КОРОБОВ
Перфокор выпускается в четырех исполнениях и сертифицирован для работы во всех типах атмосфер по ГОСТ 15150-69, что гарантирует безаварийную эксплуатацию кабельной линии на протяжении всего срока службы.
Климатический сертификат на
«Серию ЦУП»
Климатический сертификат на
«Стандартную серию»
Климатический сертификат на
«Особую серию»
Климатический сертификат на
«Экстримальную серию»
Перфокор четырехбортный представлен в разделе Индустриальные кабельные конструкции УЗЭМИ.
И помните, никто не вправе требовать от вас нарушать законодательство, тем более заказчик, который при определенных обстоятельствах займет место “по ту сторону баррикад”.
Андрей КОРОБОВ
01.11.2017
ОТРАСЛЕВЫЕ КАБЕЛЬНЫЕ КОНСТРУКЦИИ
ГК КОРОБОВ
* — изделия с крышками
При прокладке кабельной линии параллельно с теплопроводом расстояние в свету между кабелем и стенкой канала теплопровода должно быть не менее 2 м или теплопровод на всем участке сближения с кабельной линией должен иметь такую теплоизоляцию, чтобы дополнительный нагрев земли теплопроводом в месте прохождения кабелей в любое время года не превышал 10°С для кабельных линий до 10 кВ и 5°С — для линий 20-220 кВ.
При прокладке кабельной линии параллельно с железными дорогами кабели должны прокладываться, как правило, вне зоны отчуждения дороги. Прокладка кабелей в пределах зоны отчуждения допускается только по согласованию с организациями Министерства путей сообщения, при этом расстояние от кабеля до оси пути железной дороги должно быть не менее 3,25 м, а для электрифицированной дороги — не менее 10,75 м. В стесненных условиях допускается уменьшение указанных расстояний, при этом кабели на всем участке сближения должны прокладываться в блоках или трубах.
При электрифицированных дорогах на постоянном токе блоки или трубы должны быть изолирующими (асбестоцементные, пропитанные гудроном или битумом и др.)*.
* Согласовано с Министерством путей сообщения.
При прокладке кабельной линии параллельно с трамвайными путями расстояние от кабеля до оси трамвайного пути должно быть не менее 2,75 м. В стесненных условиях допускается уменьшение этого расстояния при условии, что кабели на всем участке сближения будут проложены в изолирующих блоках или трубах, указанных в 2.3.90.
При прокладке кабельной линии параллельно с автомобильными дорогами категорий I и II (см. 2.5.145) кабели должны прокладываться с внешней стороны кювета или подошвы насыпи на расстоянии не менее 1 м от бровки или не менее 1,5 м от бордюрного камня. Уменьшение указанного расстояния допускается в каждом отдельном случае по согласованию с соответствующими управлениями дорог.
При прокладке кабельной линии параллельно с ВЛ 110 кВ и выше расстояние от кабеля до вертикальной плоскости, проходящей через крайний провод линии, должно быть не менее 10 м.
Расстояние в свету от кабельной линии до заземленных частей и заземлителей опор ВЛ выше 1 кВ должно быть не менее 5 м при напряжении до 35 кВ, 10 м при напряжении 110 кВ и выше. В стесненных условиях расстояние от кабельных линий до подземных частей и заземлителей отдельных опор ВЛ выше 1 кВ допускается не менее 2 м; при этом расстояние от кабеля до вертикальной плоскости, проходящей через провод ВЛ, не нормируется.
Расстояние в свету от кабельной линии до опоры ВЛ до 1 кВ должно быть не менее 1 м, а при прокладке кабеля на участке сближения в изолирующей трубе 0,5 м.
На территориях электростанций и подстанций в стесненных условиях допускается прокладывать кабельные линии на расстояниях не менее 0,5 м от подземной части опор воздушных связей (токопроводов) и ВЛ выше 1 кВ, если заземляющие устройства этих опор присоединены к контуру заземления подстанций.
*. При пересечении кабельными линиями других кабелей они должны быть разделены слоем земли толщиной не менее 0,5 м; это расстояние в стесненных условиях для кабелей до 35 кВ может быть уменьшено до 0,15 м при условии разделения кабелей на всем участке пересечения плюс по 1 м в каждую сторону плитами или трубами из бетона или другого равнопрочного материала; при этом кабели связи должны быть расположены выше силовых кабелей.
* Согласовано с Министерством связи СССР.
При пересечении кабельными линиями трубопроводов, в том числе нефте- и газопроводов, расстояние между кабелями и трубопроводом должно быть не менее 0,5 м. Допускается уменьшение этого расстояния до 0,25 м при условии прокладки кабеля на участке пересечения плюс не менее чем по 2 м в каждую сторону в трубах.
При пересечении кабельной маслонаполненной линией трубопроводов расстояние между ними в свету должно быть не менее 1 м. Для стесненных условий допускается принимать расстояние не менее 0,25 м, но при условии размещения кабелей в трубах или железобетонных лотках с крышкой.
При пересечении кабельными линиями до 35 кВ теплопроводов расстояние между кабелями и перекрытием теплопровода в свету должно быть не менее 0,5 м, а в стесненных условиях — не менее 0,25 м. При этом теплопровод на участке пересечения плюс по 2 м в каждую сторону от крайних кабелей должен иметь такую теплоизоляцию, чтобы температура земли не повышалась более чем на 10°С по отношению к высшей летней температуре и на 15°С по отношению к низшей зимней.
В случаях, когда указанные условия не могут быть соблюдены, допускается выполнение одного из следующих мероприятий: заглубление кабелей до 0,5 м вместо 0,7 м (см. 2.3.84); применение кабельной вставки большего сечения; прокладка кабелей под теплопроводом в трубах на расстоянии от него не менее 0,5 м, при этом трубы должны быть уложены таким образом, чтобы замена кабелей могла быть выполнена без производства земляных работ (например, ввод концов труб в камеры).
При пересечении кабельной маслонаполненной линией теплопровода расстояние между кабелями и перекрытием теплопровода должно быть не менее 1 м, а в стесненных условиях — не менее 0,5 м. При этом теплопровод на участке пересечения плюс по 3 м в каждую сторону от крайних кабелей должен иметь такую теплоизоляцию, чтобы температура земли не повышалась более чем на 5°С в любое время года.
При пересечении кабельными линиями железных и автомобильных дорог кабели должны прокладываться в туннелях, блоках или трубах по всей ширине зоны отчуждения на глубине не менее 1 м от полотна дороги и не менее 0,5 м от дна водоотводных канав. При отсутствии зоны отчуждения указанные условия прокладки должны выполняться только на участке пересечения плюс по 2 м по обе стороны от полотна дороги.
При пересечении кабельными линиями электрифицированных и подлежащих электрификации на постоянном токе* железных дорог блоки и трубы должны быть изолирующими (см. 2.3.90). Место пересечения должно находиться на расстоянии не менее 10 м от стрелок, крестовин и мест присоединения к рельсам отсасывающих кабелей. Пересечение кабелей с путями электрифицированного рельсового транспорта должно производиться под углом 75-90° к оси пути.
* Согласовано с Министерством путей сообщения.
Концы блоков и труб должны быть утоплены джутовыми плетеными шнурами, обмазанными водонепроницаемой (мятой) глиной на глубину не менее 300 мм.
При пересечении тупиковых дорог промышленного назначения с малой интенсивностью движения, а также специальных путей (например, на слипах и т. п.) кабели, как правило, должны прокладываться непосредственно в земле.
При пересечении трассы кабельных линий вновь сооружаемой железной неэлектрифицированной дорогой или автомобильной дорогой перекладки действующих кабельных линий не требуется. В месте пересечения должны быть заложены на случай ремонта кабелей в необходимом количестве резервные блоки или трубы с плотно заделанными торцами.
В случае перехода кабельной линии в воздушную кабель должен выходить на поверхность на расстоянии не менее 3,5 м от подошвы насыпи или от кромки полотна.
При пересечении кабельными линиями трамвайных путей кабели должны прокладываться в изолирующих блоках или трубах (см. 2.3.90). Пересечение должно выполняться на расстоянии не менее 3 м от стрелок, крестовин и мест присоединения к рельсам отсасывающих кабелей.
При пересечении кабельными линиями въездов для автотранспорта во дворы, гаражи и т. д. прокладка кабелей должна производиться в трубах. Таким же способом должны быть защищены кабели в местах пересечения ручьев и канав.
2.3.100
При установке на кабельных линиях кабельных муфт расстояние в свету между корпусом кабельной муфты и ближайшим кабелем должно быть не менее 250 мм.
При прокладке кабельных линий на крутонаклонных трассах установка на них кабельных муфт не рекомендуется. При необходимости установки на таких участках кабельных муфт под ними должны выполняться горизонтальные площадки.
Для обеспечения возможности перемонтажа муфт в случае их повреждения на кабельной линии требуется укладывать кабель с обеих сторон муфт с запасом.
Время-токовые характеристики автоматических выключателей (В, С, D)
Сентябрь 29th, 2013 Рубрика: Автоматические выключатели, Электрооборудование
Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».
Вы наверное замечали, что на корпусах модульных автоматов изображены латинские буквы: B, C или D. Так вот они обозначают время-токовую характеристику этого автомата, или другими словами, ток мгновенного расцепления.
Согласно ГОСТа Р 50345-99, п.3.5.17 — это наименьшая величина тока, при котором автоматический выключатель сработает (отключится) без выдержки времени, т.е. это его электромагнитная защита.
В этом же ГОСТе Р 50345-99, п.5.3.5, говорится, что всего существует три стандартные характеристики (типы мгновенного расцепления):
In – номинальный ток автоматического выключателя.
Помимо характеристик типа В, С и D, существуют и не стандартные характеристики типа А, К и Z, но о них я расскажу Вам в следующий раз. Чтобы не пропустить выход новых статей, подписывайтесь на рассылку сайта.
Рассмотрим каждый вид характеристики более подробно на примере модульных автоматических выключателей ВМ63-1 серии OptiDin и Optima от производителя КЭАЗ (Курский Электроаппаратный завод).
Время-токовая характеристика типа В
Рассмотрим время-токовую характеристику В на примере автоматических выключателей ВМ63-1 от КЭАЗ. Один автомат с номинальным током 10 (А), а другой — 16 (А).
Обратите внимание, что оба автомата имеют характеристику В, что отчетливо видно по маркировке на их корпусе: В10 и В16.
Для наглядности с помощью, уже известного Вам, испытательного прибора РЕТОМ-21 проверим заявленные характеристики данных автоматов.
Вот график время-токовой характеристики (сокращенно, ВТХ) типа В:
На нем показана зависимость времени отключения автоматического выключателя от протекающего через него тока. Ось Х — это кратность тока в цепи к номинальному току автомата (I/In). Ось У — время срабатывания, в секундах.
Запомните. Время-токовые характеристики практически всех автоматов изображаются при температуре +30°С.
График разделен двумя линиями, которые и определяют разброс времени срабатывания зон теплового и электромагнитного расцепителей автомата. Верхняя линия — это холодное состояние, т.е. без предварительного пропускания тока через автомат, а нижняя линия — это горячее состояние автомата, который только что был в работе или сразу же после его срабатывания.
Пунктирная линия на графике — это верхняя граница (предел) для автоматов с номинальным током менее 32 (А).
1. Токи условного нерасцепления (1,13·In)
У каждого автомата есть такое понятие, как «условный ток нерасцепления» и он всегда равен 1,13·In. При таком токе автомат не отключится в течение 1 часа (для автоматов с номинальным током менее 63А) и в течение 2 часов (для автоматов с номинальным током более 63А).
Точку условного нерасцепления автомата (1,13·In) всегда отображают на графике. Если провести прямую, то видно, что прямая уходит как бы в бесконечность и с нижней линией графика пересекается в точке 60-120 минут.
Например, автомат с номинальным током 10 (А). При протекании через него тока 1,13·In = 11,3 (А) его тепловой расцепитель не сработает в течение 1 часа.
Еще пример, автомат с номинальным током 16 (А). При протекании через него тока 1,13·In = 18,08 (А) его тепловой расцепитель не сработает в течение 1 часа.
Вот значения «токов условного нерасцепления» для различных номиналов:
2. Токи условного расцепления (1,45·In)
Есть еще понятие, как «условный ток расцепления» автомата и он всегда равен 1,45·In. При таком токе автомат отключится за время не более 1 часа (для автоматов с номинальным током менее 63А) и за время не более 2 часов (для автоматов с номинальным током более 63А).
Кстати, точку условного расцепления автомата (1,45·In) практически всегда отображают на графике. Если провести прямую, то видно, что прямая пересекает график в двух точках: нижнюю линию в точке 40 секунд, а верхнюю — в точке 60-120 минут (в зависимости от номинала автомата).
Таким образом, автомат с номинальным током 10 (А) в течение часа, не отключаясь, может держать нагрузку порядка 14,5 (А), а автомат с номинальным током 16 (А) — порядка 23,2 (А). Но это при условии, что автоматы изначально были в холодном состоянии, в ином случае время их отключения будет находиться в пределах от 40 секунд до одного часа.
Вот значения «токов условного расцепления» для различных номиналов:
Вот об этом не стоит забывать при выборе сечения проводов и кабелей для электропроводки (вот Вам таблица в помощь).
Вот представьте себе, что кабель сечением 2,5 кв.мм Вы защищаете автоматом на 20 (А). Вдруг по некоторым причинам Вы перегрузили линию до 29 (А). Автомат 20 (А) может не отключаться в течение целого часа, а по кабелю будет идти ток, который в значительной мере превышает его длительно-допустимый ток (25 А). За это время кабель сильно нагреется и расплавится, что может привести к пожару или короткому замыканию. А если еще учесть то, что в последнее время производители кабельной продукции преднамеренно занижают сечения жил, то ситуация тем более усугубляется.
В принципе, выбор номиналов автоматических выключателей это отдельная тема для статьи. Я лишь привел здесь одну из наиболее распространенных ошибок. Если интересно, то почитайте мою статью, где я подробно разбирал ошибки одного горе-электрика и переделывал за ним его «творчество».
Лично я рекомендую защищать кабели следующим образом:
Для удобства все данные я свел в одну таблицу:
Проверить рассмотренные автоматы на токи условного нерасцепления и условного расцепления у меня нет времени, поэтому перейдем к их дальнейшей проверке — это форсированный режим проверки при токе, равном 2,55·In.
3. Проверка теплового расцепителя при токе 2,55·In
Согласно ГОСТа Р 50345-99, п.9.10.1.2 и таблицы №6, если через автоматический выключатель будет проходить ток, равный 2,55·In, то он должен отключиться за время не менее 1 секунды из горячего состояния и не более 60 секунд из холодного состояния (для автоматов с номинальным током менее 32А) и не более 120 секунд из холодного состояния (для автоматов с номинальным током более 32А).
На графике ниже Вы можете видеть, что нижний предел по отключению взят с небольшим запасом, т.е. не 1 секунду, а 4 секунды. На то есть право у производителей автоматов. Вот поэтому они всегда к каждому автомату прикладывают свою ВТХ, которая, естественно, что удовлетворяет всем требованиям ГОСТа Р 50345-99.
Автомат ВМ63-1 от КЭАЗ с номинальным током 10 (А) при токе 25,5 (А) должен отключиться за время не менее 1 секунды из горячего состояния и не более 60 секунд из холодного состояния.
Первый раз автомат отключился за время 14,41 (сек.), а второй раз — 11,91 (сек.).
Автомат ВМ63-1 от КЭАЗ с номинальным током 16 (А) при токе 40,8 (А) должен отключиться за время не менее 1 секунды из горячего состояния и не более 60 секунд из холодного состояния.
Первый раз автомат отключился за время 13,51 (сек.), а второй раз — 7,89 (сек.).
Дополнительно можно проверить тепловой расцепитель, например, при двухкратном токе от номинального, но в рамках данной статьи я этого делать не буду. На сайте имеется уже достаточно статей про прогрузку различных автоматических выключателей, как бытового, так и промышленного исполнения. Вот знакомьтесь:
4. Проверка электромагнитного расцепителя при токе 3·In
Согласно ГОСТа Р 50345-99, п.9.10.2.1 и таблицы №6, если через автоматический выключатель будет проходить ток, равный 3·In, то он должен отключиться за время не менее 0,1 секунды. Верхний предел по времени ГОСТом Р 50345-99 не определен, и у автоматов разных производителей здесь может наблюдаться не большой разброс в пределах от 1 до 10 секунд.
Странно, конечно, ведь речь идет об электромагнитном расцепителе и он должен срабатывать без выдержки времени. Но тем не менее, при токе 3·In электромагнитный расцепитель еще не срабатывает и по факту автомат отключается от теплового расцепителя. Вот именно поэтому измеренное значение петли фаза-ноль
Автомат ВМ63-1 от КЭАЗ с номинальным током 10 (А) при токе 30 (А) должен отключиться за время не менее 0,1 секунды.
Первый раз автомат отключился за время 8,71 (сек.), а второй раз — 8,11 (сек.).
Автомат ВМ63-1 от КЭАЗ с номинальным током 16 (А) при токе 48 (А) должен отключиться за время не менее 0,1 секунды.
Первый раз автомат отключился за время 8,16 (сек.), а второй раз — 6,25 (сек.).
5. Проверка электромагнитного расцепителя при токе 5·In
Согласно ГОСТа Р 50345-99, п.9.10.2.1 и таблицы №6, если через автоматический выключатель будет проходить ток, равный 5·In, то он должен отключиться за время менее 0,1 секунды.
Автомат ВМ63-1 от КЭАЗ с номинальным током 10 (А) при токе 50 (А) должен отключиться за время менее 0,1 секунды.
Первый раз автомат отключился за время 7,8 (мсек.), а второй раз — 7,7 (мсек.).
Автомат ВМ63-1 от КЭАЗ с номинальным током 16 (А) при токе 80 (А) должен отключиться за время менее 0,1 секунды.
Первый раз автомат отключился за время 8,5 (мсек.), а второй раз — 8,4 (мсек.).
Как видите, оба автомата полностью соответствуют требованиям ГОСТа Р 50345-99 и заявленным характеристикам завода-изготовителя КЭАЗ.
Кому интересно, как проходила прогрузка автоматов, то смотрите видеоролик:
Автоматы с характеристикой В применяются для защиты распределительных и групповых цепей с большими длинами кабелей и малыми токами короткого замыкания преимущественно с активной нагрузкой, например, электрические печи, электрические нагреватели, цепи освещения.
Но почему-то в магазинах их количество всегда ограничено, т.к. по мнению продавцов наиболее распространенными являются автоматы с характеристикой С. С чего это вдруг?! Вполне логично и целесообразно для групповых линий цепей освещения и розеток применять именно автоматы с характеристикой типа В, а в качестве вводного автомата устанавливать автомат с характеристикой С (это один из вариантов). Так хоть каким-то образом будет соблюдена селективность, и при коротком замыкании где-нибудь в линии вместе с отходящим автоматом не будет отключаться вводной автомат и «гасить» всю квартиру. Но о селективности я еще расскажу Вам более подробно в другой раз.
Время-токовая характеристика типа С
Автоматы с характеристикой С применяются в основном для защиты трансформаторов и двигателей с малыми пусковыми токами. Также их можно использовать для питания цепей освещения. Нашли они достаточно широкое распространение в жилом фонде, хотя свое мнение об этом я высказал чуть выше.
Внимание! Более подробнее про время-токовую характеристику С читайте в моей отдельной статье.
Время-токовая характеристика типа D
По графику видно следующее:
1. Токи условного нерасцепления (1,13·In) и токи условного расцепления (1,45·In), но о них я расскажу чуть ниже.
2. Если через автоматический выключатель будет проходить ток, равный 2,55·In, то он должен отключиться за время не менее 1 секунды в горячем состоянии и не более 60 секунд в холодном состоянии (для автоматов с номинальным током менее 32А) и не более 120 секунд в холодном состоянии (для автоматов с номинальным током более 32А).
3. Если через автоматический выключатель будет проходить ток, равный 10·In, то он должен отключиться за время не менее 0,1 секунды.
4. Если через автоматический выключатель будет проходить ток, равный 20·In, то он должен отключиться за время менее 0,1 секунды.
Автоматы с характеристикой D применяются в основном для защиты электрических двигателей с частыми запусками или значительными пусковыми токами (тяжелый пуск).
Изменение характеристик расцепления автоматов
Как я уже говорил в начале статьи, все характеристики изображаются при температуре окружающего воздуха +30°С. Поэтому, чтобы узнать время отключения автоматов при других температурах, необходимо учитывать следующие поправочные коэффициенты:
1. Температурный коэффициент окружающего воздуха — Кt.
Думаю тут все понятно из графика. Чем ниже температура воздуха, тем значение коэффициента больше, а значит и увеличивается номинальный ток автомата, другими словами, его нагрузочная способность. Или, наоборот, чем жарче, тем нагрузочная способность автомата становится меньше. Ведь не зря, в жарких помещениях или летнюю жару многие замечают частые отключения автоматов, хотя нагрузка вовсе не изменялась. Ответ кроется в этом графике.
2. Коэффициент, учитывающий количество рядом установленных автоматов — Кn.
Здесь тоже никаких премудростей нет. Когда в одном ряду установлено несколько автоматов, то они передают свое тепло рядом стоящим автоматам. Этот график учитывает конвекцию тепла и выдает корректирующий коэффициент, учитывающий этот фактор.
Логика проста. Чем больше в ряду автоматов, тем больше уменьшается их нагрузочная способность.
Далее необходимо найти ток, приведенный к условиям нашего окружающего воздуха и монтажа:
In* = In · Кt · Кn
Как эти два коэффициента применить на практике?
Для этого рассмотрим пример. Щиток стоит на улице, в нем установлены 4 автомата — один вводной (ВА47-29 С40) и три групповых (ВА47-29 С16). Температура окружающего воздуха составляет -10°С.
Найдем поправочные коэффициенты для группового автомата ВА47-29 С16:
Найдем ток, приведенный к нашим условиям:
In* = In · Кt · Кn = 16 · 1,1 · 0,82 = 14,43 (А)
Таким образом, при определении времени срабатывания автомата по характеристике С кратность тока нужно брать не как отношение I/In (I/16), а как I/In* (I/14,43).
Заключение
Все вышесказанное в данной статье я представлю в виде общей таблицы (можете смело копировать ее и пользоваться):
Если Вы заметили, то разницей между время-токовыми характеристиками В, С и D являются только значения срабатывания электромагнитного расцепителя. По тепловой защите они работают в одних интервалах времени.
P.S. Надеюсь, что после прочтения данной статьи Вы сможете самостоятельно определять пределы времени срабатывания любых автоматических выключателей, а также правильно рассчитывать сечения проводов под номиналы автоматов.
197 комментариев к записи “Время-токовые характеристики автоматических выключателей (В, С, D)”
Благодарю!Очень полезная статья.
Статья на +100500!!
Жаль что Вы не каждый день пишите их..
Пишу, когда есть свободное время.
Я ставлю вводными автоматы с хар.D, тогда вероятность селективности защиты выше. Но гарантии селективности я не даю никому — все зависит от места КЗ, сечения и длины кабеля, температуры и т.д.
Вообще на автоматы надеяться можно, но лучше заранее удаляться от проблемы перегрузки линий путем максимального увеличения их количества. Например, в старых квартирах я настоятельно рекомендую делать в каждой комнате по 2 розеточные линии 1,5 кв.мм, в кухнях — 4 линии (одна 1,5; две 2,5; одна 5-проводная 6 кв.мм).
Про селективность работы групповых и вводного автомата я могу сказать с некоторой уверенностью только после замера петли фаза ноль по каждой линии в самой удаленной точке. А считать приближенным способом — не даст гарантийного срабатывания аппаратов защиты при КЗ.
Здравствуйте, не совсем понял, способ определения Кт и Кn для конкретных температур.
Нурлан, я же привел пример выбора этих коэффициентов для щитка, где установлены 4 автомата и температура воздуха составляет -10 градусов. Делайте по аналогии.
А разве не достигается селективность просто разными номиналами автоматов? На вводе стоит 63А, а на свет — 10А. Я поставил и там и там автоматы типа С. 10-ти кратный ток для автомата на свет (100А) дает всего лишь 1,5-ро кратное превышение на вводном автомате. Свет отрубится, а квартира нет.
Андрею 30.09.2013
Я тоже раньше так думал, пока мне не объяснили, что ток КЗ может быть таким большим, что отключатся оба автомата.
Измерение сопротивления петли «фаза-ноль», по-моему, ничего не дает — сегодня оно одно, завтра другое.
Я знал, что токи КЗ очень большие, но не думал, что они такие «быстрые», что успевают отключать сразу все автоматы в цепи, независимо от их номиналов
Защита от КЗ конечно нужна спору нет, но чаще всего сталкиваюсь со срабатыванием теплового расцепителя от перегрузки.
Вот мне интересно а у теплового расцепителя
токи отключения/не отключения и откуда их можна вывести?
из времятоковых?? сомнительно., хотя хз……
я пока беру за истину для всех автоматов
1.13*Iн не отключения и 1,45*Iн отключения для теплового расцепителя.
Хотелось бы узнать ваше мнение, поскольку практического опыта у вас куда больше моего.
Тепловой расцепитель отключает автомат при кратности тока нагрузки от 1,45In до 3In у автомата с характеристикой В, от 1,45In до 5In у автомата с характеристикой С, от 1,45In до 10In у автомата с характеристикой D.
Elalex, вот как раз замер петли и дает истинную картину по токам однофазных замыканий во всех линиях и у каждого потребителя. Соответственно, делается заключение, что аппарат защиты выбран верно или не верно. Кстати, это обязательное требование — читайте ПТЭЭП. Бывают случаи, когда приходится жертововать и уменьшать номинал автомата, либо увеличивать сечение питающей линии.
Андрею 30.09.2013
Не автоматы «быстрые», а ток достаточно большой, чтобы отключить и С10, и С63, например, 1000А.
Кстати, здесь не упоминались еще 2 важные характеристики автоматов — предельная отключающая способность (обозначение на автомате — маленький прямоугольничек и число несколько тысяч, 3000 очень плохой автомат, 4500 автомат так себе, 6000 нормальный автомат, больше в квартиру ставить и не стоит, токи КЗ там больше 1000А обычно не бывают), и класс селективности, или класс ограничения энергии при отключении КЗ, сложный показатель из высшей математики (определенный интеграл от квадрата тока по времени за время отключения КЗ, измеряется в А²с, чем меньше, тем лучше).
Класс селективности обозначается на автомате числом в маленьком квадратике под вышеуказанным прямоугольником. Хорошие автоматы (бренды) имеют класс 3, т.е. этот интеграл для автоматов хар.В с токоотключением 6кА не больше 35000 А²с. Плохие автоматы, а иногда и бренды для некоторых автоматов, не указывают этот класс вообще, избегайте их.
Админу 01.10.2013
Я неправильно выразился. Я на длинных линиях тоже меряю это сопротивление с помощью чайника (падение напряжения от включения чайника 2кВт), на основании этого выбираю автоматы, но сильно сомневаюсь в стабильности этого сопротивления. Ведь по дороге от дальней розетки до обмотки трансформатора куча контактов и соединений, наверняка их сопротивление как-то меняется по времени, может там где-то меняются провода и аппараты. Так что измеренное сопротивление достоверно, как говорится, здесь и сейчас, но не завтра.
Если Вы этим занимаетесь и у Вас есть какая-то статистика по стабильности этого сопротивления, было бы интересно посмотреть.
elalex, спасибо за разъяснение — не знал про предельную отключающую способность и класс селективности. У меня оказалось как раз все в порядке с этим — автоматы фирмы Hager, тип С правда (6000 в прямоугольнике и 3 — в квадрате).
Про отключающую способность будет отдельная статья. Но все равно, elalex, спасибо.
Андрею 01.10.2013
Hager еще хорош тем, что у него самые дешевые УЗО типа А. Скажем, CD263J=40 долл. А еще можно купить поштучно автоматы В13, В20. У АВВ — только коробка по 12 шт.
Дмитрий, хорошая статья! Видно, что красный диплом заработан, а не «получен». Все очень подробно и понятно и даже с примерами. Тут тебе все разом, да с картинками! Респект!
Посвященному 09.10.2013
Интересное мнение о получении знаний через вузовское образование.
Для интереса немного посмотрел в интернете, чему учат теперешних инженеров по электрическим аппаратам. Впечатление такое, что старые пердуны переписывают свои книги 50-летней давности и сильно гордятся своими учеными степенями,званиями и успехами советской электротехники. Речи о стандарте МЭК 60898 по автоматам нет.
Естественно, грош цена таким знаниям и красным дипломам — работодатели верят не им, а опыту работы. В-общем, почти по Райкину — забудьте институт, как кошмарный сон, берите в руки стандарты,правила,нормы,каталоги,читайте Интернет,общайтесь с коллегами и будете специалистом.
elalex, Вы правы, я работаю в сетевой организации и могу подтвердить, что сопротивление петли «фаза-нуль», то бишь ток к.з. со временем меняется в достаточно больших пределах. Во всяком случае, это касается потребителей, имеющих питание от воздушных линий (видимо, ток к.з. для кабельных линий более стабилен и сетевые РД требуют эксплуатационных измерений петли «фаза-нуль» только на воздушных линиях). Скажем, ток, измеренный на концах отходящих линий на одной из ТП, в 2009г был: 210А, 220А, 220А, 290А; те же измерения в 2013г: 200А, 180А, 160А, 220А соответственно. Замены питающего трансформатора и серьёзной реконструкции линий сделано не было.
Правильно ли я понял. что в квартире вводной автомат лучше поставить с характеристикой С, а на группы с характеристикой В? Для обеспечения селективности
Дмитрию 18.11.2013 в 20:57
В квартире вводной автомат лучше поставить с характеристикой D
Дмитрий подскажите, как можно скачивать информацию с Вашего сайта.
Я хотел бы получить статью «Время-токовые характеристики автоматических выключателей (В, С, D)»
К сожалению выбор автоматов практически всегда ограничен автоматами с характеристикой С, они дешевле.
Я как-то заморочился всвязи с ремонтом и после замеров, переделать себе в доме щит. Так вот в своем регионе (от Ставрополя до Ростова) автоматов с характеристикой В, в магазинах просто нет, а специализированые базы заказывают их только упаковками, независимо от производителя.
Я, все что хотел нашел только после путешествий по интернет-магазинам, но не все такие замороченные!
Для себя поставил автоматы hager: вводной С, по группам В и С, все отлично работает.
Михаилу 18.12.2013 в 19:18
«С» дешевле «В» на 5-10%, но могут дать селективность.
С хар.В проблемы и в Киеве. Раньше закупал АВВ, но я был в магазине единственным покупателем, поэтому магазин заказывал для меня целую упаковку 12шт. Потом приходилось долго рассовывать остатки по заказчикам. Мне это надоело, теперь покупаю Hager или даже IEK поштучно у ближайшего дилера по телефонному звонку. А хар.D держат на складе всего 3 фирмы, остальные предлагают ждать 2 месяца или заказывать сразу вагон. Представляю ответы ваших продавцов про хар.D!
Михаилу 18.12.2013 в 19:23
А в каком смысле все отлично работает? Что, были селективные отключения при КЗ на самых дальних концах линий? Или просто ничего плохого не происходит, и это считается отлично работает? Это как определение здоровья: для людей это отсутствие болезней, а в Уставе ВОЗ говорится: «Здоровье является состоянием полного физического, душевного и социального благополучия, а не только отсутствием болезней и физических дефектов».
Когда я слышу от заказчиков слова об отличной (хорошей) работе, я немедленно возражаю: нужно, чтобы не просто работало хорошо, а было сделано по правилам и нормам, в том числе и по обеспечению селективности. Т.е. не С+В, а D+В, и не иначе. На эту тему был даже официальный запрос к разработчикам украинских ПУЭ. Ответ разработчиков: ничего страшного, если выбъет вводной автомат С на лестничной площадке, пойдут и включат.
для elalex
Все работает, в том числе и по селективности. Собирал в гараже после ремонта пылесос (в гараже две линии на 10А и 20А), так вот при проверки тока на двигателе получил коротыш,автомат на 20А с хар. В отключился, а с хар. С в 8 метрах выше на 32А нет. Так вот и случай помог проверить, мои замеры (есть своя лаборатория).
Скажите пожалуйста, какое отношение имеет к срабатыванию автомата по электромагнитному расцепителю горячее или холодное состояние его.
Ведь температурное состояние влияет на положение только биметаллической пластины.
При этом токе сработает уже электромагнит или я не прав.
Цитата из статьи:»Если через автоматический выключатель будет проходить ток, равный 5·In, то он должен отключиться за 0,01 секунду в горячем состоянии или за 0,04 секунды в холодном».
Спасибо
А что насчет дифавтоматов?
Есть ли у них токи отключения неотключения по перегрузу?
Чувствую накосячил. На кабель 3*4мм поставил диф 32А
Да, принцип работы электромагнитной и тепловой защиты у них аналогичен автоматам. Кабель 4 кв.мм нужно защищать дифавтоматом на 20 (А) или 25 (А).
про характеристики могу заметить следующее:
в лаборатории политеха мы спецприбором испытывали автоматы, так вот иековский «C» (токовый номинал не запомнил)у нас срабатывал по характеристике «B».
А Вы проверяли его по какой защите — электромагнитной или тепловой?
по обеим уступал заявленным характеристикам.
Такое бывает не только у IEK, но и у именитых брендов, поверьте мне.
Если автоматы с характеристикой В применяются в основном для защиты потребителей с преимущественно активной нагрузкой, а Вы рекомендуете ставить для групповых линий розеток именно тип В, то пылесос или мощный инструмент должен будет выбивать автомат.
Александру 03.04.2014
Для
Не должен.
1.В мощных хороших инструментах (типа 2кВт-болгарок) есть устройства плавного пуска, которые уменьшают пусковой ток. Может, такие есть и в пылесосах.
2.Несложно проверить В13 (у меня Hager). За 15 лет я поставил сотни, жалоб не было.
Админу.
Поясните мне пожалуйста, будет соблюдена селективность если поставить вводной 25А D и отходящий 25А С?Просто мне непонятно одно, если отключение по температуре одинаковое то характеристики С и D помогут только если ток короткого замыкание будет достаточным для С и не достаточным для D(селективность),а от перегрузок поможет только разный наминал (32 вводной и 25 отходящий) правильно?
Под перегрузками подразумеваю превышение Inom до 1.45
Артем, предположим, что Вы перегрузили линию до 35 (А), т.е. 1,4 кратный ток от номинала 25 (А). В таком случае селективность соблюдена не будет и может отключиться, как вводной автомат, так и групповой. Это по графикам очетливо видно. Но если в цепи нагрузки возникнет ток короткого замыкания, например, 300 (А) — это 12 кратный ток от номинала 25 (А), то сработает групповой автомат через время примерно 0,01 (сек.), ну а если он по каким то причинам он не сработает (какая-то неисправность самого автомата), то сработает уже вводной автомат через 0,02 (сек.). Не исключено, что при КЗ сработают оба автомата мгновенно. Смысл в том, чтобы срабатывание автоматов было селективным, нужно вводной и групповые автоматы устанавливать с отличными номинальными токами. Аналогичная ситуация с УЗО, либо разные токи утечки — на ввод 100 (мА), на группы — 30 (мА), либо на ввод устанавливать селективное УЗО с выдержкой времени. Вот здесь я подробно об этом рассказывал.
Подскажите пожалуйста. На даче вводной кабель в дом алюминий 4 квадратных мм. Судя по таблице он держит длительную нагрузку в 27А. Стоит вводной автомат характеристика C20А. Если судить по условному току неотключения, то этот провод выдержит нагрузку 1,13*20А=22,6А. А если судить по условному току отключения автомат на холодную отключиться примерно через 15 мин. Ток примерно будет равен 1,9*20А=38А. А это уже получается повышенная нагрузка для этого провода. Но если я поставлю автомат 16А. тогда его будет маловато т.к. он будет срабатывать постоянно при длительных нагрузках, к примеру 1,43*16А=22,8 А. сработает через час. Подскажите может быть есть у вас статья на тему “Допустимая кратковременная перегрузка для кабелей”, а то хотелось бы правильно подобрать автомат под этот провод и подробно изучить эту тему! ПУЭ читал что то не совсем понял)
Сергею 19.05.2014
Также, как существуют защитные характеристики автоматов, существуют нагрузочные характеристики кабелей и проводов — зависимости допустимых нагрузок от их времени. К сожалению, это секретная информация, мне удалось увидеть ее только в общих чертах — это типичная обратно-пропорциональная зависимость без резких провалов, как в автомате. Очевидно, что она будет лежать выше или ниже в зависимости от условий работы кабеля.
Характеристика автомата тоже зависит от условий его работы. В идеале характеристика автомата должна быть выше характеристики кабеля во всех местах.
Полностью учесть все факторы при работе кабелей и автоматов если и можно, то очень сложно. Например, между электриками идут споры, какими данными руководствоваться при выборе сечений кабелей.
Пока же приходится только верить и надеяться, что автомат, подобранный по номинальному току кабеля, обеспечит его защиту во всех режимах.
Лично я руководствуюсь принципом: при номинальной токе кабеля автомат должен быть готов выключиться (точка 1,13 ном).
Не стоит панически бояться, что в некоторых режимах перегрузок ток может очень превышать допустимый. По идее, автомат успеет отключить кабель до его повреждения.
Для алюминия 4кв.мм я бы взял вводной автомат на 20А, но очень вероятно, что хар.В, а не С (смотри Выбор вводного автомата дачи).
Сергею 19.05.2014
Замеченные неточность и ошибка в предыдущем посте.
1.Лучше сказать не «зависимости допустимых нагрузок от их времени», а «зависимости допустимых нагрузок от их продолжительности».
2.В идеале характеристика автомата должна быть НИЖЕ характеристики кабеля во всех местах.
Админ, тебе надо памятник ставить!! За 20 минут понял все лучше чем за год института. Спасибо огромное!!
Цитата: «Согласно ГОСТа Р 50345-99″
Данный ГОСТ устарел и заменен на ГОСТ Р 50345-2010
Хочу дополнить: по европейским стандартам (МЭК) существуют так же другие кривые, например A (2-3 кр.) K (8-14 кр.), Z (2-4кр.) и др.
Приведенные сдесь и в статье кратности указаны для автоматических выключателей переменного тока (50, 60 Гц). У автоматов постоянного тока так же есть такие характеристики, которые отличаются значением срабатыания.
На ВТХ на оси отношения токов есть точка 2,55. Чем она примечательна? Спасибо.
Александру 08.12.2014 в 17:03
Это промежуточная точка теплового расцепителя в диапазоне срабатываний от 1с до 120с. Точное описание такое.
При испытательном токе 2,55ном из начального холодного состояния должно происходить расцепление за время от 1с до 60с при номинальном токе до 32А и за время от1с до 120с при номинальном токе более 32А.
Никакого особого значения эта точка не имеет. Гораздо важнее точки 1,13ном (начало срабатывания группы автоматов одинакового номинала) и 1,45ном (конец срабатывания — последний в этой же группе автоматов). Т.е. разброс в характеристиках одного и того же номинала может быть достаточно велик. Лично я выбираю автомат по точке 1,45ном — лучше пусть сработает раньше, чем нужно, нежели позже, чем нужно.
Александру:
08.12.2014 в 17:03
Точка 2,55In на время токовой характеристике выключателя примечательна тем, что время расцепления автоматического выключателя в этой точке нормировано п. 8.6.1 ГОСТ Р 50345-99. 1 с < t < 60 с (при In ≤ 32 A); 1 с < t 32 A). В этой точке можно проверить на исправность тепловой расцепитель любого автоматического выключателя, не имея ВТХ изготовителя.
Дмитрию:
16.02.2014 в 02:20
К срабатыванию автомата по электромагнитному расцепителю горячее или холодное состояние его никакого отношения не имеет. Эти вертикальные линии на время токовых характеристиках указывают на допустимый диапазон токов срабатыватия электромагнитного расцепителя. ГОСТ Р 50345-99 п. 5.3.5 Стандартные диапазоны мгновенного расцепления :
«В» от 3In до 5In
«С» от 5In до 10In
«D» от 10In до 50In
На приведённой в статье характеристике «D» изготовитель задал более узкий диапазон для тока срабатывания мгновенного расцепителя, но за пределы требований ГОСТ не вышел.
Верхняя и нижняя линии на время токовой характеристике указывают не холодное и горячее состояние автоматического выключателя, а допустимый диапазон времени отключения при заданной кратности тока перегрузки I/In.
Толян:
17.09.2014 в 09:28
«Данный ГОСТ устарел и заменен на ГОСТ Р 50345-2010».
Спасибо за информацию. Буду искать. У меня под рукой есть только ГОСТ Р 50345-99.
Александру:
08.12.2014 в 17:03
При копировании пропала часть строки. Допустимое время срабатывания при I=2,55In теплового расцепителя автоматм с номинальным током >32А составляет от 1 до 120 секунд.
Подскажите пожалуйста, а какой автомат и кабель выбрать для тока 20,5 А ? Вроде как кабель должен быть 2,5 мм2 (т.к. он тянет ток до 25 А) и автомат должен быть С16А (ток неотключения 18,08 ,а ток отключения-23,2). Верно?
Дмитрию 31.01.2015 в 17:58
Кто боится больше, ставит 16А. Я боюсь меньше, ставлю В20. Кто совсем не боится, ставит С25. Оцените уровень своего страха и выбирайте из этого ряда. Автомат выбирается по уровню Вашего страха, а не по сечению кабеля.
Выражения «ток неотключения»(1,13ном) и «ток отключения»(1,45ном) сбивают с толку начинающих электриков. Наверно, понятнее было бы назвать их либо «начало зоны отключения тепловой защиты», «конец зоны отключения тепловой защиты», либо «ближняя» и «дальняя» граница зоны отключения тепловой защиты.
Несогласен с вашией фразой «Нижняя линия — это горячее состояние автомата (после срабатывания), а верхняя линия — это холодное состояние.»
По ГОСТу испытания как для нижней так и для верхней границы (для В — 3 и 5 Iн) проводятся начиная с холодного состояния
Здравствуйте! спасибо за статью все понятно!
но вопрос в следующем .Ввод кабель ввг 5х25 стоит вводной автомат на него 100 А кабель по таблице пуэ 1.3.4 выдерживает длительно 85 А
а если 100 х 1.45 = 145 А и такое я наблюдал очень много причем это проектируют граммотные проектировщики поэтому здесь я запутался объясните пожалуйста!
Денис, уточните как проложен кабель: в трубе (в коробе, на лотках), на воздухе или в земле.
Денису 04.03.2015 в 02:55
По-моему, способ прокладки особого значения не имеет. Зато имеет элементарная логика: с чего Вы взяли, что они грамотные? Я уже неоднократно приводил примеры полного идиотизма проектировщиков как в местном, так и в общесоюзном масштабе, не говоря уже о разработчиках ПУЭ.
Проектировщики запроектировали асфальтовое покрытие станций киевского метро и отсутствие защиты от КЗ во многих квартирах СССР (автоматы АЕ1031-2).
Денису 04.03.2015 в 02:55
Денис, таблицу нужно брать 1.3.6 «Допустимый длительный ток для проводов с медными жилами с резиновой изоляцией в металлических защитных оболочках и КАБЕЛЕЙ с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке, бронированных и небронированных», а не 1.3.4, которая для ПРОВОДОВ и ШНУРОВ. Для вашего кабеля, 5х25 максимальный ток по этой таблице будет 95А. При выборе автомата, умножать нужно на коэффициент 1.13, так как это коэффициент неотключения. При 1.45 автомат отключится через N-ное время (2-3 часа). Возьмём автомат на 80А. 80*1.13=90,4. Такой ток, кабель 5х25 выдержит сколь угодно. Автомат на 100А будет уже перебором (100*1.13=113, что больше 95А)
elalex, а вот как раз таки и имеет. Посмотрите по таблицам, как изменяется длительно-допустимый ток кабеля, проложенного в трубе (коробе), на открытом воздухе или в земле. Для того же ВВГ (5х25), значение длительного тока может быть, как 85 (А) по табл. 1.3.4, так и 95 (А) по воздуху и 150 (А) в земле по таблице 1.3.6. Естественно, что лучше уменьшить номинал вводного автомата или увеличить сечение питающего кабеля, чтобы был некоторый запас.
Забыл добавить. Выше, я писал про кабель, проложенный на воздухе.
1.Сильно сомневаюсь, что человек со стороны, не принимавший участия в монтаже, может узнать условия прокладки кабеля на всех участках. И достаточно прозевать один самый нагруженный (термически) участок, чтобы он и прогорел. Впечатление такое, что не глядя нужно рассчитывать на самый худший случай.
2.Вопрос к Админу. Как думаете, что понимает ПУЭ под термином «в земле»? Бронированный кабель непосредственно в земле? Или ВВГ в трубе в земле тоже? И какая влажность земли предполагается?
То же касается и прокладки в воздухе. Одно дело на улице зимой на морозе, другое дело на летнем солнцепеке или в горячем помещении.
Все определения такие скользкие, что нет никакой уверенности в правильности использования таблиц ПУЭ.
Всем доброго времени суток! кабель проложен по сухому подвалу в гофрированной трубе примерно 25м. вот спросил у четырех человек )))проектировщики у всех большой стаж проектирования все сказали все в порядке по выбору автомата на этот кабель) . получается что то они не допонимают или я).
и еще спрошу в табл. 1.3.4. пуэ последние столбики одного двухжильного и одного трехжильного это я так понимаю в первом случае например 3х2.5 кабель а во втором 4х2.5 или 5х2.5 мм2 т.к нулевой рабочий в 4х проводной системе и нулевой защитный и заземляющий в расчет не берется. ну тоесть для трехжильного кабеля выбираем столбец с одногодвухжильным прально понимаю. СПАСИБО
Денису 04.03.2015 в 19:58
1.Говорю Вам, как говорю своим заказчикам: скажите своим проектировщикам, пусть покажут, где написано то, что они говорят. Посмотрите на их реакцию и сделайте выводы, кто из вас недопонимает.
2.Вот видите, какими нужно быть козлами, чтобы написать такие правила, чтобы электрики не могли в них разобраться без дополнительных разъяснений! Я у себя в Киеве не стесняюсь лично долбать разработчиков наших ПУЭ (идентичных российским), чтобы продолжали разъяснять ПУЭ и включили таки пункт об обязательности УЗО для всей квартиры, без исключения освещения и электроплит.
Стать прочитал, много недочетов.
1. На ВТХ автомата приведены 2 характеристики: теплового (ТР) и электромагнитного расцепителей (ЭР).
2. У ЭР нет понятия холодное или нагретое состояние, на графике показан технологический разброс параметров (B: 3-5In; C: 5-10In и D: 10-20In). При токе КЗ нижней границы (3, 5 или 10In) ЭР сработает свыше 0,1 но не более 5 с; при токе КЗ верхней границы (5, 10 или 20In) ЭР сработает менее чем 0,1 с — точное время срабатывания даже изготовитель не может указать.
3. А вот у ТР понятия холодное и нагретое состояние есть. Взгляните на верхнюю часть графика: 1,13 — без расцепления; 1,45 — расцепление менее чем за 60 мин. Приложите ток 2,55In и у ТР до 32 А расцепление произойдет от 4 с до 60 с; приложите ток 3In и у ТР расцепление произойдет от 3 до 40 с; приложите ток 5In и у ТР расцепление произойдет от
10 c (пользуюсь приведенными ВТХ). То есть, если ТР не дать остыть и вновь приложить ток, то отключение произойдет за наименьшее указанное время.
Еще раз ознакомьтесь с паспортом на автоматы по МЭК 60898-1 и с их ВТХ и срочно исправляйте статью.
elalex
04.03.2015 в 22:38
Температуры, для длительно допустимые токов, кстати, в ПУЭ указаны.
Николаю 26.03.2015 в 09:36
Какие температуры?
elalex
Температуры, при которых определены длительно допустимые токи проводов и кабелей. Глава 1.3 ПУЭ. Для других температур, думаю, не составит труда привести указанные токи.
Николаю 26.03.2015 в 22:27, частично Денису 04.03.2015 в 19:58
Как-то я не сильно обращал внимание на Главу 1.3 ПУЭ, но вот теперь присмотрелся. Впечатление такое, что критиковать ее можно бесконечно.
Можете ли Вы утверждать, что разработчики ПУЭ в заголовках колонок токов Таблицы 1.3.4 ПУЭ понимают только провода, по которым идут токи, т.е. рабочие фазы и ноли, в дополнение к которым проложены заземляющие и нулевые защитные проводники? Я правильно понял абзац ПУЭ, что «При определении количества проводов, прокладываемых в одной трубе (или жил многожильного проводника), нулевой рабочий проводник четырехпроводной системы трехфазного тока, а также заземляющие и нулевые защитные проводники в расчет не принимаются»?
Кстати, что не учитывается нулевой рабочий проводник четырехпроводной системы трехфазного тока — это может стать проблемой, если сечение выбрано без учета возможности токов 3-й гармоники.
Земля +15 для Вас может быть, что-то и значит, а для меня ничего — это может быть и сухой песок, и мокрая глина. Хорошо, хоть в разделе кабелей с бумажной пропитанной изоляцией упомянули зависимость максимальных нагрузок от удельного теплового сопротивления земли.
Разработчики не видят никакой существенной разницы в условиях охлаждения при разных способах и местах прокладки труб, при прокладке кабелей в воздухе и в коробе.
Сами наименования проводов, кабелей, шнуров и их изоляции взяты из древнего совкового прошлого. Не могу утверждать, что сильно знаю номенклатуру и конструкцию кабелей и теперешнюю действительность, но догадываюсь, что резина массово ушла из изоляции (кроме КГ, H05RR-F), а шнуров (не предназначены для стационарной прокладки) с поливинилхлоридной изоляцией не знаю (вроде у них полиэтилен).
Насколько применима таблица 1.3.6 «кабели с медными жилами с резиновой изоляцией в свинцовой, поливинилхлоридной, найритовой или резиновой оболочке» для обыкновенных кабелей ВВГ или NYM? Бог его знает!
Я во времена Брежнева знал определение, что такое «переносной шланговый шнур, переносной шланговый тяжелый кабель», а что об этом знают современные молодые электрики? Чему их учит ПУЭ?
Какой практикующий электрик будет мерять температуру земли, воздуха или коэффициент использования, чтобы определить снижающий коэффициент на токи? Или учтет количество автоматов в ряду?
И т.д. и т.п. Общее мрачное впечатление, если перефразировать моего главного специалиста в проектном институте — ПУЭ (по крайней мере, в части главы 1.3) созданы для очистки совести безумных проектантов.
elalex:
27.03.2015 в 03:04
ПУЭ очень неоднозначное издание, в нем нужно очень хорошо ориентироваться, что бы не свернуть шею. Что бы получить ответ на один вопрос часто приходится перерывать несколько глав…
Вот, например: длительно допустимые токи проводов и кабелей тесно переплетаются с выбором защиты: ПУЭ 3.1.9; 3.1.11
elalex:
09.12.2014 в 00:11
Здесь хочу сделать замечание: автоматы могут быть разными, не все имеют характеристики ВСD стандарта МЭК, необходимо смотреть реальную ВТХ автомата. До сих пор выпускаются 1,1In 3,5In, 12In… а есть еще микропроцессорные расцепители…
Привет. подскажите, может кто знает, ВТХ на автоматик типа Т2N 160 TMD, весь интернет перерыл ничего кроме объявлений не нашёл… заранее благодарю….
Здравствуйте!
А двух- или трех-полюсный автоматы при определении «Коэффициента, учитывающего количество рядом установленных автоматов» по графику в статье считается как один, или как два или три соответственно, установленных рядом?
Здравствуйте.
В РЩ магазина,в соответствии с договором на выделенную мощность, на вводе установлен АВ С25(А) для 3-х фазной сети,а в ГРЩ установлен АВ С32(А) для з-х фазной сети. Основные потребители-это однофазные морозильники (10 шт.), холодильники (7шт)и 2 кондиционера.Всё работало нормально, пока не установили еще 1 холодильник.И теперь иногда выбивает вводной АВ С25(А),а если денек еще и жаркий, то чаще. Понятно, что срабатывание происходит от перегрузки.
Выделенную мощность увеличить нереально. Дефицит не очень большой. Подскажите, можно ли решить проблему? Спасибо.
Сергею 23.09.2015 в 03:17
1.Вводной автомат С25 — это 6х3=18кВт максимальной потребляемой мощности. Думаете, ваше оборудование столько набирает?
2.Посмотрите равномерность распределения нагрузки по фазам.
3.Вводной автомат опечатан? Если нет, замените трехфазный С25 на три 1-фазных D25. Предполагаю, выбивает при одновременном пуске нескольких аппаратов. Нужно придумать схему автоматики, чтобы не запускались одновременно.
4.Кондиционеры — хорошо, пока не выбивает. По идее, холодильники важнее.
elalex»у» 23.09.2015 в 08:56
Спасибо за совет.
1.Без кондиционеров никак, потому что морозильники выделяют много тепла.
2.Вводной автомат не опечатан.
3.Нагрузка по фазам распределена приблизительно равномерно.
Верна ли мысль? Если в ГРЩ установить 3-х фазный D32(А),а на вводе в РЩ установить три 1-фазных В32(А) или С32(А),то при перегрузке должен сработать автомат с характеристикой «В».
Здравствуйте у меня вопрос к вам, на рисунке Время-токовая характеристика для предохранителя 80 ампер в РШ дома, я не понемаю только то при токе 125 ампер через какое время он сработает. не понемаю рисунок, пожалуйста помогите.
Гоша, Ваш вопрос предлагаю обсудить на форуме, там можно прикрепить график время-токовой характеристики предохранителя к Вашему сообщению, что нельзя сделать на сайте. Спасибо.
Источник https://grand-electro.ru/elektrosnabzhenie/kak-zaschitit-kabel-ot-mehanicheskih-povrezhdeniy.html
Источник http://zametkielectrika.ru/vremya-tokovye-xarakteristiki-avtomaticheskix-vyklyuchatelej/
Источник