Автоматический выключатель: принцип работы, классификация, конструкция, назначение

Содержание

Автоматический выключатель: принцип работы, классификация, конструкция, назначение

Автоматический выключатель (для защиты от сверхтока) (circuit-breaker) — это контактное коммутационное устройство, способное к включению, проведению и отключению электрических токов при нормальных условиях электрической цепи, а также способное к включению, проведению в течение установленного времени и автоматическому отключению электрических токов при установленных анормальных условиях электрической цепи, например при коротком замыкании (определение на основе ГОСТ IEC 60050-441-2015) [1]. Данный термин имеет среди обычных лиц популярный жаргонизм «автомат».

Автоматический выключатель замыкает и размыкает электрические цепи при помощи собственных контактов. Поэтому его идентифицируют в качестве контактного коммутационного устройства.

Принцип работы

Харечко Ю.В. описывает в своей книге [5] принцип работы автоматического выключателя следующим образом:

« Автоматический выключатель замыкает и размыкает одну или несколько подключенных к нему электрических цепей с помощью своих главных контактов. Под замыканием понимают оперирование, в результате которого автоматический выключатель переводится из разомкнутого положения в замкнутое; под размыканием – из замкнутого положения в разомкнутое. »

внешний вид автоматических выключателей

Рис. 1. Пример внешнего вида автоматических выключателей (А — однополюсный автоматический выключатель серии S 200, Б — трехполюсный автоматический выключатель серии S 200 P)

« Замкнутое положение автоматического выключателя обеспечивает предопределенную непрерывность его главной цепи, разомкнутое положение – предопределенный зазор между разомкнутыми контактами главной цепи автоматического выключателя. »

« При коммутации электрических цепей автоматический выключатель выполняет включение и отключение, а также включение с последующим автоматическим отключением. »

« Замыкание и размыкание, выполняемые без протекания электрического тока в главной цепи автоматического выключателя, относят к его механическому оперированию, т. е. к оперированию автоматического выключателя в условиях отсутствия электрического тока в его главной цепи. »

« Включение и отключение, осуществляемые при протекании электрического тока в главной цепи автоматического выключателя, относят к электрическому оперированию, т. е. к оперированию автоматического выключателя в условиях протекания электрического тока в его главной цепи. Электрическое оперирование называют также коммутацией. »

« Автоматическое оперирование автоматического выключателя происходит при появлении в его главной цепи тока перегрузки или тока короткого замыкания. Время отключения сверхтока зависит от индивидуальной время-токовой характеристики автоматического выключателя, которая должна находиться в пределах стандартной время-токовой зоны. »

Классификация

Стандарт МЭК 60050‑441 и ГОСТ IEC 60050‑441-2015 определили несколько видов автоматических выключателей [1]:

  • «токоограничивающий автоматический выключатель (current-limiting circuit-breaker): Автоматический выключатель с достаточно коротким временем отключения, чтобы предотвращать достижение током короткого замыкания своего иначе достижимого пикового значения»;
  • «автоматический выключатель со встроенными плавкими предохранителями (integrally fused circuit-breaker): Комбинация в одном устройстве автоматического выключателя и плавких предохранителей, в которой последовательно с каждым полюсом автоматического выключателя, предназначенным для присоединения к фазному проводнику, установлен один плавкий предохранитель»;
  • «автоматический выключатель с блокировкой замыкания (circuit-breaker with lock-out preventing closing): Автоматический выключатель, в котором ни один из подвижных контактов не может включить электрический ток, если команду на замыкание инициируют в то время, когда сохраняются условия, которые должны вызвать размыкание»;
  • «автоматический выключатель в литом корпусе (moulded-case circuit-breaker): Автоматический выключатель, имеющий опорный корпус из литого изоляционного материала, составляющий неотъемлемую часть автоматического выключателя»;
  • «автоматический выключатель с заземленным баком (dead tank circuit-breaker): Автоматический выключатель, главные контакты которого расположены в заземленном металлическом баке»;
  • «автоматический выключатель с баком, находящимся под напряжением (live tank circuit-breaker): Автоматический выключатель, главные контакты которого расположены в баке, изолированном от земли»;
  • «воздушный автоматический выключатель (air circuit-breaker): Автоматический выключатель, контакты которого размыкаются и замыкаются в воздухе при атмосферном давлении»;
  • «масляный автоматический выключатель (oil circuit-breaker): Автоматический выключатель, контакты которого размыкаются и замыкаются в масле»;
  • «вакуумный автоматический выключатель (vacuum circuit-breaker): Автоматический выключатель, контакты которого размыкаются и замыкаются в оболочке с высоким вакуумом»;
  • «автоматический выключатель с газовым дутьем (gas-blast circuit-breaker): Автоматический выключатель, в котором электрическая дуга образуется в потоке газа»;
  • «элегазовый автоматический выключатель (sulphur hexafluoride circuit-breaker, SF6 circuit-breaker): Автоматический выключатель, контакты которого размыкаются и замыкаются в гексафториде серы (элегазе)»;
  • «автоматический выключатель с воздушным дутьем (air-blast circuit-breaker): Автоматический выключатель с газовым дутьем, в котором используемым газом является воздух».

Автоматические выключатели, которые применяют в электроустановках зданий, обычно представляют собой воздушные автоматические выключатели в литом корпусе. Некоторые автоматические выключатели являются токоограничивающими автоматическими выключателями. Иногда используют автоматические выключатели со встроенными плавкими предохранителями.

В стандарте МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 [2] установлена следующая классификация автоматических выключателей по типу выводов:

автоматические выключатели с выводами резьбового типа для внешних медных проводников;
автоматические выключатели с выводами безрезьбового типа для внешних медных проводников;
автоматические выключатели с плоскими выводами быстрого соединения для внешних медных проводников;
автоматические выключатели с выводами резьбового типа для внешних алюминиевых проводников.

По способу крепления стандарт МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 [2] следующим образом классифицируют автоматические выключатели:

автоматические выключатели, электрическое присоединение которых не связано с механическим креплением;
автоматические выключатели, электрическое присоединение которых связано с механическим креплением, например: автоматические выключатели втычного типа, болтового типа и ввинчиваемого типа.

В стандарте МЭК 60898‑1 и ГОСТ IEC 60898-1-2020 [2] установлена следующая классификация автоматических выключателей по числу полюсов:

однополюсные автоматические выключатели;
двухполюсные автоматические выключатели с одним защищенным полюсом;
двухполюсные автоматические выключатели с двумя защищенными полюсами;
трехполюсные автоматические выключатели с тремя защищенными полюсами;
четырехполюсные автоматические выключатели с тремя защищенными полюсами;
четырехполюсные автоматические выключатели с четырьмя защищенными полюсами.

В стандарте МЭК 60898‑2 и ГОСТ IEC 60898-2-2011 [3] для универсальных автоматических выключателей установлена иная их классификация по числу полюсов:

однополюсные автоматические выключатели;
двухполюсные автоматические выключатели с двумя защищенными полюсами.

Назначение и требования

Харечко Ю.В. в своем словаре [5] акцентирует внимание на том, что:

« Основным предназначением автоматического выключателя, как следует из требований стандарта МЭК 60364‑4‑43 и разработанного на его основе ГОСТ Р 50571.4.43, является защита от сверхтока проводников электрических цепей в электроустановке здания с целью обеспечения электрической и пожарной безопасности. Автоматический выключатель должен продолжительное время проводить без отключения любой электрический ток, величина которого не превышает его номинальный ток, и своевременно отключать электрические цепи при появлении в них тока перегрузки или тока короткого замыкания. »

[5]

« При типах заземления системы TN‑C, TN‑S и TN‑C‑S автоматический выключатель можно также использовать для осуществления защиты от поражения электрическим током в составе такой меры защиты, как автоматическое отключение питания. Основные требования к автоматическому отключению питания в электроустановках зданий изложены в разделах 411 «Защитная мера − автоматическое отключение питания» стандарта МЭК 60364‑4‑41 и разработанного на его основе ГОСТ Р 50571.3. В главе 1.7 «Заземление и защитные меры электробезопасности» Правил устройства электроустановок седьмого издания изложены устаревшие требования к обеспечению защиты от поражения электрическим током, переписанные из ранее действовавшего ГОСТ Р 50571.3–94. В главе 1.7 «Заземление и защитные меры электробезопасности» Правил устройства электроустановок седьмого издания изложены устаревшие требования к обеспечению защиты от поражения электрическим током, переписанные из ранее действовавшего ГОСТ Р 50571.3–94. »

Международные требования к автоматическим выключателям не бытового назначения изложены в стандарте МЭК 60947‑2, который применяют в совокупности со стандартом МЭК 60947‑1. Национальные требования к ним содержатся в ГОСТ Р 50030.2-2010, который применяют совместно с ГОСТ IEC 60947-1-2017.

Стандарт МЭК 60947‑1 и ГОСТ IEC 60947‑1-2017 предназначены для согласования требований и рекомендаций общего характера, относящихся к низковольтной коммутационной аппаратуре и аппаратуре управления, с целью их унификации в соответствующих классах устройств и устранения необходимости испытаний по различным стандартам. В обоих стандартах изложены требования и рекомендации, которые являются общими для низковольтной коммутационной аппаратуры и аппаратуры управления, предназначенной для эксплуатации в электрических цепях переменного тока напряжением до 1000 В и постоянного тока – до 1500 В включительно. Требования этих стандартов применяют совместно с требованиями других стандартов, входящих в состав комплексов МЭК 60947 «Низковольтная коммутационная аппаратура и аппаратура управления», ГОСТ IEC 60947 и ГОСТ Р 50030.

Стандарт МЭК 60947‑2 и ГОСТ Р 50030.2 распространяются на автоматические выключатели, предназначенные для работы в электрических цепях переменного тока напряжением до 1000 В и постоянного тока – до 1500 В включительно. Такие автоматические выключатели могут иметь любые номинальные токи, различные конструкции и способы применения. Стандарты также содержат дополнительные требования к автоматическим выключателям со встроенными плавкими предохранителями.

Указанные автоматические выключатели применяют в низковольтных распределительных устройствах, установленных в различных сооружениях, на трансформаторных подстанциях, в распределительных пунктах и др. Эти автоматические выключатели используют также во вводно-распределительных устройствах, во вводных устройствах, в главных распределительных щитах и других низковольтных распределительных устройствах электроустановок жилых, общественных, производственных и других зданий.

Международные требования к автоматическим выключателям для электрического оборудования (АВО), которые специально предназначены для защиты электрических цепей в электрооборудовании, изложены в стандарте МЭК 60934. Национальные требования к этим автоматическим выключателям содержатся в ГОСТ IEC 60934-2015. Эти автоматические выключатели применяют в цепях электрического оборудования переменного тока, имеющих напряжение до 440 В, и постоянного тока при напряжении до 250 В включительно. Номинальный ток АВО не может быть более 125 А.

Международные требования к автоматическим выключателям бытового назначения, предназначенным для применения в электроустановках зданий, изложены в стандартах МЭК 60898‑1 и МЭК 60898‑2. Национальные требования к ним содержатся в ГОСТ IEC 60898-1-2020 и ГОСТ IEC 60898-2-2011.

В стандарте ГОСТ IEC 60898-1-2020 приведены требования к воздушным автоматическим выключателям, контакты которых замыкаются и размыкаются в воздухе при атмосферном давлении. Автоматические выключатели предназначены для работы в электрических цепях переменного тока частотой 50 и (или) 60 Гц. Они должны иметь номинальное напряжение не выше 440 В, номинальный ток – до 125 А и номинальную коммутационную способность при коротком замыкании – не более 25000 А.

Автоматические выключатели бытового и аналогичного назначения предназначены для использования обычными лицами и не нуждаются в обслуживании. Эти автоматические выключатели могут иметь одно или несколько значений номинального тока. Однако механизм, с помощью которого в автоматическом выключателе осуществляют переход от одного значения номинального тока к другому, в нормальных условиях эксплуатации должен быть недоступным потребителю, а само переключение должно быть возможным только при помощи инструмента.

Вам будет интересно  Линия автоматической штамповки

Автоматические выключатели, номинальный ток которых регулируют средствами, доступными потребителю, а также автоматические выключатели, предназначенные для защиты электродвигателей, не рассматривают в стандарте МЭК 60898‑1 и ГОСТ IEC 60898-1-2020.

С помощью автоматических выключателей, конструкция которых соответствует требованиям стандарта МЭК 60898‑1 и ГОСТ IEC 60898-1-2020, в электроустановках зданий можно реализовать функцию разъединения. То есть автоматические выключатели бытового назначения могут быть использованы в качестве разъединителей.

Стандарт МЭК 60898‑2 и ГОСТ IEC 60898-2-2011 устанавливают дополнительные требования к однополюсным и двухполюсным автоматическим выключателям1, предназначенным для использования также в электрических цепях постоянного тока и имеющим номинальное напряжение до 220 В (однополюсные) и до 440 В (двухполюсные), номинальный ток до 125 А и номинальную коммутационную способность при коротком замыкании (для постоянного тока) до 10000 А включительно.

Конструкция

Рассмотрим более подробно конструкцию автоматических выключателей бытового назначения, которые производят в соответствии с требованиям стандартов МЭК 60898‑1 и МЭК 60898‑2, ГОСТ IEC 60898-1-2020 и ГОСТ IEC 60898-2-2011.

Большая часть информации, которую вы прочитаете ниже основана на материалах из книги Ю.В. Харечко [5].

Харечко Ю.В. описывает конструкцию автоматического выключателя следующим образом:

« Автоматический выключатель имеет главную цепь и может иметь цепь управления и вспомогательную цепь.

Главная цепь объединяет все проводящие части автоматического выключателя, включенные в электрическую цепь, которую он предназначен замыкать и размыкать.

Автоматический выключатель: принцип работы, классификация, конструкция, назначениеРис. 2. Конструкция однополюсного автоматического выключателя серии S 200 (рисунок заимствован из книги [4] автора Харечко Ю.В.)

На рисунке 2 обозначено:

  • 1 – орган управления;
  • 2 – выводы;
  • 3 – главный контакт;
  • 4 – дугогасительная камера;
  • 5 – тепловой расцепитель перегрузки (разновидность расцепителя сверхтока);
  • 6 – электромагнитный расцепитель короткого замыкания

Цепь управления автоматического выключателя предназначена для осуществления его замыкания и размыкания или выполнения обоих оперирований. Эта цепь включает в себя проводящие части автоматического выключателя, применяемые для его управления, за исключением тех частей, которые входят в состав главной цепи автоматического выключателя.

Вспомогательная цепь объединяет все проводящие части автоматического выключателя, предназначенные для включения в электрическую цепь, используемую, например, для дистанционной индикации его коммутационного положения. К этой цепи не относят проводящие части автоматического выключателя, которые входят в состав его главной цепи и цепи управления.

Для оснащения автоматического выключателя цепью управления и вспомогательной цепью к нему следует прикрепить одно или несколько дополнительных устройств, таких, например, как блок-контакт, независимый расцепитель и расцепитель минимального напряжения.

Блок-контакт представляет собой выключатель с одним или несколькими контактами управления и (или) вспомогательными контактами, который механически приводится в действие автоматическим выключателем. Для автоматических выключателей выпускают блок-контакт положения (БКП), предназначенный для указания коммутационного положения автоматического выключателя, и блок-контакт срабатывания (БКС), предназначенный для указания срабатывания автоматического выключателя.

При замыкании главных контактов автоматического выключателя замыкающие контакты БКП замыкаются, а размыкающие контакты – размыкаются. При размыкании автоматическим выключателем своих главных контактов из-за появления в его главной цепи сверхтока, под воздействием независимого расцепителя или расцепителя минимального напряжения, а также при ручном управлении автоматическим выключателем замыкающие контакты БКП размыкаются, а размыкающие контакты – замыкаются.

Применение блок-контактов положения во вспомогательных цепях автоматических выключателей позволяет выполнить в электроустановке здания систему сигнализации и контроля их коммутационного положения. Кроме того, БКП могут быть использованы в цепях управления других коммутационных устройств, которые применяют в одной электроустановке здания.

При замыкании главных контактов автоматического выключателя замыкающие контакты БКС замыкаются, а размыкающие контакты БКС размыкаются. В исходное положение контакты БКС возвращаются в двух случаях: при размыкании автоматическим выключателем своих главных контактов из-за появления в его главной цепи сверхтока и при отключении автоматического выключателя с помощью независимого расцепителя или расцепителя минимального напряжения. При ручном отключении автоматического выключателя контакты БКС не меняют своего коммутационного положения. Блок-контакты срабатывания, как правило, используют во вспомогательных цепях для сигнализации об отключении автоматическим выключателем сверхтока, но их можно применять и в цепях управления других коммутационных устройств, установленных в электроустановке здания.

Независимый расцепитель и расцепитель минимального напряжения применяют для управления автоматическим выключателем.

Главная цепь автоматического выключателя состоит из одного, двух, трех или четырех полюсов. Под полюсом понимают часть автоматического выключателя, связанную исключительно с одним электрически независимым проводящим путем его главной цепи, оснащенную контактами, предназначенными замыкать и размыкать главную цепь, исключая те части, которые обеспечивают средства для монтажа и совместного оперирования всеми полюсами.

Наиболее широкое применение в электроустановках зданий получили однополюсные автоматические выключатели, предназначенные для использования в однофазных двухпроводных электрических цепях, и трехполюсные автоматические выключатели, которые используют в трехфазных трехпроводных и четырехпроводных электрических цепях. В однофазных двухпроводных и трехфазных четырехпроводных электрических цепях применят также соответственно двухполюсные и четырехполюсные автоматические выключатели.

Для выполнения функции по защите от сверхтока автоматический выключатель оснащают защищенными полюсами. Оставшийся полюс автоматического выключателя, если таковой имеется, может быть незащищенным полюсом или коммутирующим нейтральным полюсом.

Защищенный полюс оснащен расцепителем сверхтока. Незащищенный полюс не имеет расцепителя сверхтока, но во всем остальном он способен к той же самой работе, как защищенный полюс того же самого автоматического выключателя. Коммутирующий нейтральный полюс предназначен коммутировать электрическую цепь нейтрального проводника, но не предназначен иметь коммутационную способность при коротком замыкании.

В главной цепи каждого полюса автоматического выключателя имеются главные контакты. Главный контакт представляет собой контакт, включенный в главную цепь автоматического выключателя и предназначенный для проведения в замкнутом положении электрического тока, протекающего в его главной цепи.

При размыкании главной цепи автоматического выключателя, по которой протекает электрический ток (особенно – сверхток), возможно возникновение электрических дуг между разъединяемыми частями главных контактов. Поэтому автоматические выключатели оснащают дуговыми контактами, на которых предполагается возникновение электрической дуги.

Дуговой контакт обычно является главным контактом. Он имеет специальную конструкцию проводящих частей, которая обеспечивает перемещение электрической дуги в дугогасительную камеру, где она разбивается металлическими пластинами на несколько частей и интенсивно гасится.

В многополюсном автоматическом выключателе подвижные контакты всех полюсов (за исключением коммутирующего нейтрального полюса) должны замыкать и размыкать главную цепь практически одновременно как при автоматическом, так и при ручном оперировании. Контакты коммутирующего нейтрального полюса должны размыкаться позже, а замыкаться раньше контактов остальных полюсов автоматического выключателя.

В цепи управления автоматического выключателя имеются контакты управления, которые механически приводятся в действие этим же автоматическим выключателем. Вспомогательные контакты, если их используют, входят в состав вспомогательной цепи автоматического выключателя и механически приводятся в действие этим же автоматическим выключателем.

Каждый автоматический выключатель оснащают одним или несколькими расцепителями, которые предназначены для инициирования:

автоматического размыкания главных контактов в случае появления сверхтока в главной цепи автоматического выключателя;
автоматического размыкания автоматического выключателя при снижении напряжения или изменении других характеристик подключенных к нему электрических цепей и электрооборудования;
дистанционного отключения автоматического выключателя.

Расцепитель представляет собой устройство, механически связанное с автоматическим выключателем или встроенное в него, которое освобождает удерживающее приспособление в механизме автоматического выключателя и инициирует его автоматическое размыкание. Для выполнения автоматическими выключателями функций по защите от сверхтока их оснащают расцепителями сверхтока. Автоматические выключатели могут быть оснащены независимыми расцепителями и расцепителями минимального напряжения.

Независимый расцепитель представляет собой расцепитель, возбуждаемый источником напряжения. Он предназначен для дистанционного управления автоматическим выключателем. Его используют в тех случаях, когда существует потребность в дистанционном отключении каких-то электрических цепей с помощью автоматических выключателей.

После подачи напряжения на цепь управления независимого расцепителя его электромагнитный механизм воздействует на удерживающее приспособление автоматического выключателя, инициируя размыкание контактов его главной цепи. Управляющий сигнал для независимого расцепителя может быть сформирован вручную, например, посредством кнопочного выключателя с замыкающим контактом. Сигнал управления также может быть сгенерирован каким-либо коммутационным или электронным устройством по факту выполнения каких-то предопределенных условий, например, таймером при наступлении установленного часа.

Включение автоматического выключателя после осуществления его дистанционного отключения с помощью независимого расцепителя производят вручную.

Расцепитель минимального напряжения представляет собой расцепитель, инициирующий размыкание автоматического выключателя с выдержкой времени или без нее, когда напряжение на выводах расцепителя снижается ниже предопределенного значения. Основным его назначением является побуждение автоматического выключателя к отключению электрооборудования при недопустимом для него снижении напряжения. Расцепитель минимального напряжения обычно вызывает отключение автоматического выключателя при снижении напряжения в своей цепи управления до 75% от его номинального значения (например, равного 230 В переменного тока) и менее, а также препятствует включению автоматического выключателя, если напряжение в этой цепи меньше 85% от номинального напряжения.

Каждый автоматический включатель имеет механизм свободного расцепления, который обеспечивает размыкание главных контактов в момент включения автоматического выключателя, если в его главной цепи начинает протекать ток перегрузки или ток короткого замыкания.

Этот механизм позволяет осуществлять отключение автоматическим выключателем сверхтока в тот момент, когда выполняют его ручное управление. Например, при ручном оперировании автоматическим выключателем на включение электрической цепи, в которой имеется короткое замыкание, по замыканию главных контактов через главную цепь автоматического выключателя начнет протекать ток короткого замыкания. Под его воздействием расцепитель сверхтока освободит удерживающее приспособление в механизме автоматического выключателя. Главные контакты автоматического выключателя станут автоматически размыкаться, несмотря на то, что в рассматриваемый промежуток времени еще продолжается ручное управление на их замыкание.

В каждом автоматическом выключателе предусмотрена индикация его коммутационного положения, которая позволяет определить, в каком положении (замкнутом или разомкнутом) находятся его главные контакты. С этой целью автоматический выключатель может быть оснащен индикатором положения. В противном случае коммутационное положение автоматического выключателя указывает орган управления, который должен иметь два четко различающихся состояния покоя, соответствующих замкнутому и разомкнутому положению его главных контактов.

При автоматическом срабатывании автоматического выключателя из-за появления сверхтока в его главной цепи орган управления автоматического выключателя может занимать отдельное, третье положение. Орган управления вертикально установленного автоматического выключателя обычно перемещается вверх-вниз. При его перемещении вверх главные контакты автоматического выключателя замыкаются, а при перемещении органа управления вниз они размыкаются. Замкнутое положение автоматического выключателя обозначают знаком I (вертикальной чертой), разомкнутое положение – знаком О (окружностью).

Для электрического присоединения автоматического выключателя к проводникам внешних электрических цепей используют выводы, которые могут быть выводами резьбового типа и выводами безрезьбового типа. Обычно автоматические выключатели оснащают резьбовыми выводами: столбчатыми, винтовыми, штифтовыми, пластинчатыми, реже – выводами для наконечников. Наиболее распространенным видом выводов у современных автоматических выключателей является столбчатый вывод, в отверстие или полость которого вставляют проводник и зажимают его одним или несколькими винтами. Некоторые фирмы начинают производить автоматические выключатели, оснащенные выводами безрезьбового типа. »

Выключатель автоматический: как выбрать в 9 шагов по науке

Со времен далекой молодости после окончания института в памяти запечатлелась картинка: я у друга в однокомнатной квартире. Мы сидим за шахматами. Его молодая жена шьет рядом.

По комнате бодро ходит малыш. Ему еще нет годика: познает мир. В левой руке какая-то погремушка, в правой — женская шпилька от волос.

И вдруг — ужас! На наших глазах он вставляет эту проволоку в розетку, получает удар током. Мышцы ног мгновенно реагируют: прыжок от стенки метра на полтора. Мальчик падает.

Вам будет интересно  Как подобрать оборудование для производства изделий из металлического листа

Из розетки вырывается пламя и дым. Знаете, чем все закончилось? Пацан отделался легким испугом, а алюминиевая проводка от розетки до распределительной коробки выгорела полностью. Свет не отключился.

Защиты от короткого замыкания не сработали: автомат заклинило, но пожара не было. Огонь просто погас внутри бетонной стены после того, как отгорел провод. Шпилька успела привариться к контакту розетки.

Вот я и решил написать подробную инструкцию, что такое выключатель автоматический: как выбрать его модуль за 9 шагов поэтапно. Будете выполнять — избавитесь от многих неприятностей.

Автоматический выключатель: принцип работы и устройство в картинках

Основное назначение автомата — ликвидировать аварийные ситуации в подключенных токовых цепях. Они бывают двух видов:

  1. Короткие замыкания (КЗ) или “коротец”, как их называют на жаргоне электриков.
  2. Перегрузки.

КЗ возникают за счет подключения к цепям действующего напряжения электрических цепочек с минимальным сопротивлением, которые создают громадные токи, зависящие от мощности питающих источников.

Токи коротких замыканий могут прожигать не только изоляцию воздушной среды во время ее ионизации, но и плавить металл проводки, вызывать
пожар, причинять другие беды.

На принципе управления токов коротких замыканий работают многочисленные сварочные аппараты, люди успешно пользуются ими. Но, внезапно появляющиеся КЗ наносят огромный вред.

Перегрузки опасны тем, что незаметно создают перегрев изоляции, повреждают ее. За счет возникших в ней дефектов появляются опасные токи утечек, которые способны выявить и ликвидировать только УЗО.

Перегрузки тоже являются частой причиной пожаров оборудования.

Конструкция автоматического выключателя состоит из двух раздельных модулей, каждый из которых работает, реагируя преимущественно на КЗ или перегрузку. Это:

  1. Электромагнитная отсечка.
  2. Тепловой расцепитель.

Простая кинематическая схема показывает устройство автоматического выключателя и принцип его работы.

Устройство автоматического выключателя

Электрический ток протекает от сети к нагрузке сквозь замкнутые главные контакты и катушку соленоида отключения. Тепловое воздействие воспринимается биметаллической пластиной, а силовое — сердечником электромагнита.

Биметалл или сердечник в критической ситуации бьют по поворотному рычагу, выколачивая его из зацепления с защелкой, удерживающей главный контакт во включенном состоянии. Под действием сильной отключающей пружины он быстро размыкает электрическую цепь.

Конструктивно все производители реализуют этот принцип по своим разработкам. Поэтому они немного отличаются на всех моделях. Но, общее представление внутреннего устройства дает следующая картинка.

Конструкция автоматического выключателя

Принцип работы электромагнита расцепителя отсечки двумя словами

Когда по обмотке протекает ток, то в ее сердечнике, служащей магнитопроводом, создается магнитное поле.

Если сила тока достигает критической величины, то магнитная энергия выстреливает сердечник, преодолевая натяжение удерживающей пружины. Тогда боек выбивает защелку.

Современный электромагнитный расцепитель имеет небольшие габариты, подключается гибкими проводниками к контактам.

Электромагнитный расцепитель

Тепловой расцепитель автоматического выключателя: насколько просто работает

Конструкция состоит из двух соединенных пластин: сталь и латунь. У них разное линейное расширение: зависимость от температуры. При нагреве биметалл изгибается в одну сторону, а охлаждении — противоположно.

Тепловой расцепитель

Ток проходит по закрепленной на биметаллической пластине обмотке. Во время перегрузки или КЗ биметалл воздействует на поворотный механизм, а тот — отключает автомат, обесточивая подключенные потребители.

Выключатель автоматический: как выбрать по науке и жить в безопасности

Огромное количество производителей и обширный ассортимент их автоматов, предназначенных для разных условий эксплуатации, усложняют выбор их приобретения.

При покупке следует использовать только научный подход, не полагаясь на мнение даже знакомых электриков. С этой целью все ведущие заводы наносят маркировку прямо на корпусе модуля автомата. Привожу пример для Legrand.

Маркировка автоматического выключателя

Выбирать модуль выключателя автоматического нужно минимум по 9 характеристикам:

  1. значению действующего напряжения и форме тока;
  2. числу полюсов;
  3. величине номинального тока защищаемой цепи;
  4. времятоковой характеристике;
  5. мощности нагрузки;
  6. предельной коммутационной способности;
  7. классу токоограничения;
  8. селективности действия;
  9. степени защита корпуса IP.

Вам придется учесть их действие комплексно.

Смотрим напряжение автоматического выключателя: начальный
шаг

Сразу надо обращать внимание на условия надежной работы модуля. Дело в том, что подобные защиты могут создаваться для универсальной работы в цепях постоянного или/и переменного тока.

Примером может служить известная серия советских и российских защит, выпускаемая как автоматический выключатель АП-50.

Автоматический выключатель АП-50

У них бывает разный уровень напряжения. Он не всегда может подойти для надежной работы в конкретной проводке. Надо проверять внимательно.

Отдельные модули могут быть созданы только для эксплуатации в цепях переменного тока.

Напряжение автоматического выключателя

Число полюсов автоматического выключателя: шаг №2

Бытовые автоматы изготавливают для работы в однофазной или трехфазной цепи. На защите ввода при аварии они снимают потенциалы фаз и нуля, полностью обесточивая питающую схему.

У отходящих же линий отключается только потенциал фазы, а ноль остается в работе. Этого вполне достаточно для ликвидации аварии и создания более простой схемы подключения.

Выбор автоматического выключателя по количеству полюсов

Шаг 3: выбор автоматического выключателя по току — скрытые секреты

Нормальная работа автомата требует учитывать 4 значения тока:

  1. Номинальной величины.
  2. Условного нерасцепления.
  3. Условного расцепления.
  4. Длительно допустимого.

Величина номинального тока пишется Iн (In). Она указывается на корпусе, используется как базовое значение для выбора, работы и проверок защиты. Такая нагрузка должна длительно проходить через замкнутые контакты без их отключения.

Током условного нерасцепления называют величину I=1,13×Iн. При такой нагрузке защита не должна отключаться за время меньшее, чем 1 час с номиналом до 63 А и 2 часа — более мощным.

Характеристика условного тока расцепления определяет величину, которая надежно разрывает превышенную нагрузку.

Длительно допустимая величина тока введена для учета температурного состояния проводки без ее чрезмерного нагрева с учетом характеристик токопроводящей способности: вида металла и поперечного сечения.

Выбор автоматического выключателя по току

Все эти величины я привел наглядным графиком для меди.
Можете им воспользоваться при расчете проекта новой проводки. Данные брал из
справочников, а электрическими проверками не занимался.

Если кто-то возьмется за эту работу, то результаты
обязательно опубликую. А проверять надо, ибо с длительно допустимыми токами в
медном проводе 4 и 6 квадрата просматривается интересная закономерность.

С алюминием не стал возиться: в быту он опасен. Тем пользователям, кому интересен этот вопрос, предлагаю сравнить его характеристики с медью по следующей таблице.

Выбор сечения кабеля

Выбор автоматического выключателя при проектировании проводки необходимо проводить по характеристике его номинального тока. Этот анализ осуществляют последовательно за 3 приема:

  1. Расчет тока линии по нагрузке подключенных потребителей.
  2. Выбор номинала модульной защиты по ближайшему значению стандартного ряда величин токов.
  3. Подбор сечений проводников под действующие токовые нагрузки.

Как выбрать автоматический выключатель по номинальному току

Каждая из трех составляющих важна. Допущенные ошибки исправлять сложно. Поэтому каждый этап следует повторно проверять.

Одиночные или групповые потребители, как и однофазная или трехфазная схема питания накладывают свои особенности на расчет тока подключенной линии по собственным формулам. Это наиболее сложная часть анализа.

Шаг 4: времятоковая характеристика выключателя — основа правильного выбора типа конструкции

Нагрузки электрической сети носят случайный либо закономерный
характер. Они всегда меняются при подключении потребителей.

Лампы накаливания и ТЭНы с резистивными сопротивлениями не дают такие эффекты, как включение индуктивных устройств: электродвигателей, дросселей, трансформаторов. Кабельные линии обладают емкостным сопротивлением.

Любое включение прибора связано с созданием апериодических
составляющих, формирующих переходные процессы. Они характеризуются различными бросками токов.

Конструкция автоматического выключателя должна учитывать эти
явления и обеспечивать нормальное электроснабжение потребителей в любой
сложной, изменчивой ситуации.

Под эти требования технически сложно создать простой и надежный автоматический выключатель с универсальным набором возможностей.
Электротехническая наука пошла по другому пути: разделение нагрузок по типам реактивных составляющих и создание модулей защит под каждую.

С этой целью используется времятоковая характеристика выключателя, имеющая 3 типа: B, C и D. Они имеют разные параметры отстроек защиты от токов переходных процессов.

Времятоковая характеристика

На графике по оси абсцисс приведено отношение тока действующей нагрузки к номинальной величине, а ординат — время отключения в
секундах и их долях.

Тип B применяется для потребителей с характерной резистивной нагрузкой: обогреватели, цепи освещения, протяженные линии электропитания.

Тип C используется для смешанных схем с розеточными группами и потребителями, создающими умеренные нагрузки при включении электродвигателей.

Тип D выбирают для потребителей не бытового назначения: силовые трансформаторы и нагрузки с повышенными токами при пусках оборудования.

Если использовать тип B автоматического выключателя для
дома, то он может ложно срабатывать при включениях стиральной или посудомоечной машины, электрических насосов, мощных пылесосов.

Автомат типа D просто не среагирует на опасность, когда она не достигнет величины его уставки, но потребует защиты оборудования от броска тока.

Выбор автоматического выключателя по мощности — шаг №5: нужно ли его делать?

Именно вопросу выбора автоматов по мощности нагрузки уделяют много внимания авторы статей для интернет. Поэтому я решил тоже высказать свое
мнение. А ваша задача: учесть или высказаться против.

Вся хитрость в том, что электрические характеристики любых бытовых приборов указываются в ваттах, а защиты маркируются амперами. Никаких
других секретов здесь больше нет.

Блогеры просто переводят нагрузку, выраженную мощностью, через напряжение бытовой сети в ток. Делают это посредством новых таблиц, схем, калькуляторов.

Я предлагаю отказаться от этой идеи, а модуль защиты рассчитывать по току номинальной величины с учетом вольтамперной характеристики. Будет меньше ошибок, да и искать их станет проще. Понимаю, что выбор остается за вами.

Шаг 6: предельная коммутационная способность — критическая характеристика модуля защиты

Исходим из того, что в природе нет контактов, способных выдерживать любые нагрузки. У них всегда есть предел, выше которого они просто сгорают.

Эту величину производитель определяет экспериментально и показывает цифрой внутри прямоугольника.

Предельная коммутационная способность

Обычно модули создаются под токи КЗ до 4,5 либо 6 или 10 килоампер. Когда автомат имеет отличия предельной коммутационной способности (ПКС) для цепей переменного и постоянного тока, то они указываются отдельно. Причем каждой величине приписывается свой символ: «

Это значение в принципе зависит от технического состояния электропроводки — ее сопротивления. Оно закладывается в проект, зависит от многих факторов:

  • протяженности магистралей;
  • сечения и качества токопроводящих жил;
  • количества и состояния соединительных контактов;
  • удаленности от питающей трансформаторной подстанции;
  • условий технического обслуживания.
  • У старых зданий с ветхой алюминиевой проводкой ПКС составляет 4500 ампер.
  • Медная электропроводка обеспечивает токи КЗ 6 килоампер.
  • Когда потребитель находится близко от трансформаторной подстанции, то автоматы надо ставить на 10кА.

Шаг 7: классы токоограничения автоматического выключателя — в чем суть характеристики

Скорость отключения короткого замыкания напрямую влияет на
безопасность оборудования, а модули защит работают не одинаково. Показатели быстродействия позволяют подбирать автоматы, работающие в щадящем или экстремальном режиме оборудования.

Для наглядности действия рассмотрим их срабатывание на примере длительности одного периода напряжения синусоиды тока или напряжения (обозначается Т).

Класс токоограничения автоматического выключателя

В него входят две полуволны гармоники. Для стандартной частоты 50 герц время прохождения периода составляет 20 миллисекунд (мс).

Максимальное значение тока или его амплитуда достигается при четверти периода или половине полупериода. На графике я показал усредненные временные показатели трех классов токоограничения: 1, 2 и 3.

Класс №1 самый продолжительный, а значит экстремальный. Его время чуть превышает 10 мс. Для наглядности показано как Т/2. На корпусе автомата его просто не обозначают.

Класс №2 занимает промежуточное время по скорости. Такая защита должна отработать за время 6÷10 мс. На графике усреднено как 1/2(Т/2).

Класс №3 самый быстрый и экономный со временем срабатывания 2,5÷6 мс, что я обозначил как 1/3(Т/2).

Классы токоограничения 2 и 3 маркируются на корпусе под прямоугольником ПКС квадратиком с соответствующей цифрой.

Вам будет интересно  Что такое опока в ювелирном деле? Процесс литья ювелирного украшения

Шаг 8: селективность автомата — залог качественного отключения аварии

Смысл выбора этого параметра заключается в избирательной способности защиты правильно локализовать короткое замыкание или перегруз и оставить в работе исправное оборудование.

Поясняю на простом примере квартирной проводки.

Селективность автоматического выключателя

Любая розетка по разным причинам может стать источником короткого замыкания. Аварию может отключить автомат №3 квартирного щитка, №2 —
подъездный или №3 — домовой.

Однако обесточивать этаж либо подъезд /дом имеет смысл только при отказе выключателя №3, используя эту функцию как резервную. В первую
очередь надежно должны срабатывать квартирные защиты.

Поэтому они настраиваются на более быстрое срабатывание или меньшие уставки тока при наладке. Предусмотреть эту возможность следует во
время выбора конструкции.

Иногда возникают затруднения с настройкой избирательности на вводном автомате. Для таких случаев можно приобрести специальный селективный
автоматический выключатель.

Его конструкция имеет механизм, обеспечивающий два пути протекания тока: основной и дополнительный для теплового расцепителя со своими
связанными силовыми контактами.

Резистор селективности внутри дополнительного канала задерживает срабатывание своего контакта на уставку избирательности. А основной канал работает как обычный.

Общее отключение защиты происходит после разрыва контактов обоих каналов, что также способен выполнить электромагнит отсечки.

Подобный механизм может быть полезен владельцам частных домов или коттеджей, хотя в большинстве случаев селективность можно обеспечить выбором характеристик быстродействия и настройкой токовых уставок обычных модулей.

Заключительный шаг №9: степени защиты корпуса для помещений повышенной влажности

Обычно автоматы устанавливают в квартирном или ином щитке, защищенном от проникновения воды и посторонних предметов. Но иногда их приходится включать на мобильное оборудование или удлинители.

Когда такими приборами пользуются во влажных помещениях, то следует обращать внимание на техническую способность корпуса работать в опасной
среде.

Она маркируется индексом IP с цифрами, обозначающими степень защиты. На обычных автоматах достаточно обозначения IP20. Ее показывают в сопроводительной документации.

IP20

Программа Электрик 7.8 или способ компьютерного расчета автомата

На сайте электротехнических программ можно бесплатно скачать и установить на свой компьютер доступный калькулятор расчета. Адрес я показал картинкой.

Электрик 7.8

Загрузка, инсталляция и работа описаны отдельной статьей. Я проверил несколько функций этой программы. Работает нормально. Результат вычислений усредненный.
Можете использовать.

Вам придется учесть 2 фактора:

  1. Сайт работает на бесплатном конструкторе и забит навязчивой рекламой.
  2. Автор не берет на себя ответственность за конечный результат вычислений. Его вам придется проверять вручную.

В целом программа подойдет начинающим электрикам для создания первоначальной схемы своего проекта.

Ошибки электриков не только начинающих в работе защит

К такому выводу я пришел на работе, занимаясь многочисленной проверкой этих защит на специализированных стендах. Поэтому еще раз рекомендую приобретенный автомат до ввода в эксплуатацию подвергать жестким испытаниям от реальной нагрузки и замерять временные характеристики.

Ошибка электрика №1: проверка петля фаза-ноль не выполнена

Суть этого теста состоит в том, что ток короткого замыкания, который должен почувствовать и отключить автомат, банально по закону Ома зависит от сопротивления подключенной в него цепи.

Другими словами, длина проводов от автомата до розетки и дальше к включенному в нее потребителю может снизить ток короткого замыкания до
такого предела, когда уставка для срабатывания защиты окажется выше: выключатель не сработает.

Эта возможность проверяется специальными приборами.

Проверка петли фаза ноль

Ее следует обязательно выполнять.

Ошибка электрика №2: плохой монтаж проводки обученной бригадой

Когда писал эту статью у меня в квартире пропал свет и надолго. Старенький макбук работает девятый год, аккумулятор уже изъят…

Под окном увидел аварийную машину электриков ЖКХ. Спустился вниз по лестнице спросить, что случилось. Подъездный щит вскрыт. Бригада 3
человека: пожилой монтер, производитель среднего возраста и молодой
руководитель работ после института с бумагами.

Один работает, два стоят и наблюдают. Присоединился, стал третьим. Мне сказали, что перемычка на нулевой провод греется и ее будут менять. Я это и так понял. Там алюминиевая жила где-то примерно на 6 квадрат (оценил взглядом).

Монтер ее заменил и подключил на скрутку. Да, на скрутку, причем длиной не более 4 см. Я говорю: халява, сэр! На меня устремилось 3 пары
глаз и последовал вопрос: ты кто такой? Отвечаю: релейщик с 330.

Двое ничего не поняли, а парень с института посмотрел с уважением. Попытка объяснить ошибку встретила психологический отпор со стороны
самоуверенного монтера.

Мне, увидев такую работу, пришлось сразу идти в магазин и покупать реле контроля напряжения, хотя планировал его установку позже. Здание то старое.

Обрыв нуля трехфазной сети за счет отгорания скрутки гарантирован, а ловить 380 вольт вместо 220 в своей квартире нет желания.

Обрыв нуля в трехфазной сети

Тем людям, кто любит смотреть видео, рекомендую к просмотру ролик владельца elektrik-sam.info. Он тоже доступно объясняет все про выключатель автоматический: как выбрать его правильно.

Тема немного сложная и у вас могут остаться вопросы. Задавайте их в разделе комментариев. Я обязательно отвечу.

Автоматические выключатели

Автоматический выключатель (автомат) — это коммутационный аппарат предназначенный для защиты электрической сети от сверхтоков, т.е. от коротких замыканий и перегрузок.

Определение «коммутационный» означает, что данный аппарат может включать и отключать электрические цепи, другими словами производить их коммутацию.

Автоматические выключатели бывают с электромагнитным расцепителем защищающим электрическую цепь от короткого замыкания и комбинированным расцепителем — когда дополнительно с электромагнитным расцепителем применяется тепловой расцепитель защищающий цепь от перегрузки.

Примечание: В соответствии с требованиями ПУЭ бытовые электросети должны быть защищены как от коротких замыканий, так и от перегрузки, поэтому для защиты домашней электропроводки следует применять автоматы именно с комбинированным расцепителем.

Автоматические выключатели делятся на однополюсные (применяются в однофазных сетях), двухполюсные (применяются в однофазных и двухфазных сетях) и трехполюсные (применяются в трехфазных сетях), так же бывают четырехполюсные автоматические выключатели (могут применяться в трехфазных сетях с системой заземления TN-S).

Автоматический выключатель: принцип работы, классификация, конструкция, назначение

Устройство и принцип работы автоматического выключателя.

На рисунке ниже представлено устройство автоматического выключателя с комбинированным расцепителем, т.е. имеющий и электромагнитный и тепловой расцепитель.

расцепитель автоматического выключателя

1,2 — соответственно нижняя и верхняя винтовые клеммы для подключения провода

3 — подвижный контакт; 4 — дугогасительная камера; 5 — гибкий проводник (применяется для соединения подвижных частей автоматического выключателя); 6 — катушка электромагнитного расцепителя; 7 — сердечник электромагнитного расцепителя; 8 — тепловой расцепитель (биметалли́ческая пласти́на); 9 — механизм расцепителя; 10 — рукоятка управления; 11 — фиксатор (для крепления автомата на DIN-рейке).

Синими стрелками на рисунке показано направление протекания тока через автоматический выключатель.

Основными элементами автоматического выключателя являются электромагнитный и тепловой расцепители:

Электромагнитный расцепитель обеспечивает защиту электрической цепи от токов короткого замыкания. Он представляет из себя катушку (6) с находящимся в ее центре сердечником (7) который установлен на специальной пружине, ток в нормальном режиме работы проходя по катушке согласно закону электромагнитной индукции создает электромагнитное поле которое притягивает сердечник внутрь катушки, однако силы этого электромагнитного поля не хватает что бы преодолеть сопротивление пружины на которой установлен сердечник.

При коротком замыкании ток в электрической цепи мгновенно возрастает до величины в несколько раз превышающей номинальный ток автоматического выключателя, этот ток короткого замыкания проходя по катушке электромагнитного расцепителя увеличивает электромагнитное поле воздействующее на сердечник до такой величины, что его силы втягивания хватает на то что бы преодолеть сопротивление пружины, перемещаясь внутрь катушки сердечник размыкает подвижный контакт автоматического выключателя обесточивая цепь:

Автоматический выключатель: принцип работы, классификация, конструкция, назначение

При коротком замыкании (т.е. при мгновенном возрастании тока в несколько раз) электромагнитный расцепитель отключает электрическую цепь за доли секунды.

Тепловой расцепитель обеспечивает защиту электрической цепи от токов перегрузки. Перегрузка может возникнуть при включении в сеть электрооборудования общей мощностью превышающей допустимую нагрузку данной сети, что в свою очередь может привести к перегреву проводов разрушению изоляции электропроводки и выходу ее из строя.

Тепловой расцепитель представляет из себя биметаллическую пластину (8). Биметаллическая пластина — эта пластина спаянная из двух пластин различных металлов (металл «А» и металл «В» на рисунке ниже) имеющих разный коэффициент расширения при нагреве.

Автоматический выключатель: принцип работы, классификация, конструкция, назначение

При прохождении по биметаллической пластине тока превышающего номинальный ток автоматического выключателя пластина начинает нагреваться, при этом металл «B» имеет больший коэффициент расширения при нагреве, т.е. при нагреве он расширяется быстрее чем металл «A», что приводит к искривлению биметаллической пластины, искривляясь она воздействует на механизм расцепителя (9), который размыкает подвижный контакт (3).

Автоматический выключатель: принцип работы, классификация, конструкция, назначение

Время срабатывания теплового расцепителя зависит от величины превышения тока электросети номинального тока автомата, чем больше это превышение тем быстрее сработает расцепитель.

Как правило тепловой расцепитель срабатывает при токах в 1,13-1,45 раз превышающих номинальный ток автоматического выключателя, при этом при токе превышающем номинальный в 1,45 раза тепловой расцепитель отключит автомат через 45мин — 1 час.

Время срабатывания автоматических выключателей определяется по их время-токовым характеристикам (ВТХ)

При любом отключении автоматического выключателя под нагрузкой на подвижном контакте (3) образуется электрическая дуга которая оказывает разрушающее воздействие на сам контакт, причем чем выше отключаемый ток, тем мощнее электрическая дуга и тем большее ее разрушающее возде йствие. Для сведения к минимуму ущерба от электрической дуги в автоматическом выключателе она направляется в дугогасительную камеру (4), которая состоит из отдельных, параллельно установленных пластин, попадая между этих пластин электрическая дуга дробится и затухает.

3. Маркировка и характеристики автоматических выключателей.

характеристики автоматических выключателей

ВА47-29 — тип и серия автоматического выключателя

Номинальный ток — максимальный ток электрической сети при котором автоматический выключатель способен длительно работать без аварийного отключения цепи.

Стандартные значения номинальных токов автоматических выключателей: 1; 2; 3; 4; 5; 6; 8; 10; 13; 16; 20; 25; 32; 35; 40; 50; 63; 80; 100; 125; 160; 250; 400; 630; 1000; 1600; 2500; 4000; 6300, Ампер.

Номинальное напряжение — максимальное напряжение сети на которое рассчитан автоматический выключатель.

ПКС — предельная отключающая способность автоматического выключателя. Данная цифра показывает максимальный ток короткого замыкания который способен отключить данный автоматический выключатель сохранив при этом свою работоспособность.

В нашем случае ПКС указан 4500 А (Ампер), это значит что при токе короткого замыкания (к.з.) меньшем, либо равном 4500 А автоматический выключатель способен разомкнуть электрическую и остаться в исправном состоянии, в случае если ток к.з. превысит данную цифру возникает возможность оплавления подвижных контактов автомата и их привариванию друг к другу.

Характеристика срабатывания — определяет диапазон срабатывания электромагнитного расцепителя автоматического выключателя.

Например в нашем случае представлен автомат с характеристикой «C» его диапазон срабатывания от 5·Iн до 10·Iн включительно. (Iн— номинальный ток автомата), т.е. от 5*32=160А до 10*32+320, это значит что наш автомат обеспечит мгновенное отключение цепи уже при токах 160 — 320 А.

Характеристика срабатывания является одним из параметров время-токовых характеристик автоматических выключателей подробнее о которых читайте в статье: «Время-токовые характеристики (ВТХ) автоматических выключателей»

Автоматический выключатель: принцип работы, классификация, конструкция, назначение

Примечание:

  • Стандартными характеристиками срабатывания (предусмотренными ГОСТ Р 50345-2010) являются характеристики «B», «C» и «D»;
  • Область применения указана в таблице согласно установившейся практике, однако она может быть иной в зависимости от индивидуальных параметров конкретных электрических сетей.

4. Выбор автоматического выключателя

Примечание: Полную методику расчета и выбора автоматических выключателей читайте в статье: «Расчет электрической сети и выбор аппаратов защиты»

Выбор автомата осуществляется по следующим критериям:

— По количеству полюсов: одно- и двухполюсные применяются для однофазной сети, трех- и четырехполюсные — в трехфазной сети.

— По номинальному напряжению: Номинальное напряжение автоматического выключателя должно быть больше либо равно номинальному напряжению защищаемой им цепи:

Uном. АВ Uном. сети

— По номинальному току: Определить необходимый номинальный ток автоматического выключателя можно одним из четырех следующих способов:

  1. С помощью нашего калькулятора расчета автомата по мощности.
  2. С помощью нашего калькулятора расчета автомата по сечению кабеля.
  3. С помощью следующей таблицы:

таблица выбора автомата по мощности и сечению кабеля

  1. Рассчитать самостоятельно по методике приведенной в статье: «Расчет электрической сети и выбор аппаратов защиты«

— Выбираем характеристику срабатывания: зачастую характеристику срабатывания автоматического выключателя выбирают исходя из назначения защищаемой им сети (согласно таблице характеристик срабатывания выше) однако автомат выбранный таким образом может не обеспечить своевременное отключение цепи при коротком замыкании, характеристику срабатывания необходимо определять по методике приведенной здесь.

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Источник https://www.asutpp.ru/chto-takoe-avtomaticheskiy-vyklyuchatel.html

Источник https://electrikblog.ru/vyklyuchatel-avtomaticheskiy-kak-vybrat-v-9-shagov-po-nauke/

Источник https://elektroshkola.ru/apparaty-zashhity/avtomaticheskie-vyklyuchateli/

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Предыдущая статья Снайпер — самая прибыльная стратегия на рынке Forex
Следующая статья Разрешительные документы для участия в тендере